Malaria Vaccines: Another Step Closer to Beating Malaria
Zev van Zanten
No translator
Over the next two years, nearly 18 million more live-saving doses of RTS,S/AS01 – the first-ever malaria vaccine – will be distributed throughout Africa. While the issues that have plagued the roll-out so far are likely to continue, the widespread release of this vaccine (and the continual development of new vaccines) are still humanity’s best weapon in the fight to end malaria.
Malaria and Our History With It:
Malaria has long plagued humanity, with cases (or at least what we assume are cases based on symptoms) reported as far back as 2700 BCE. Caused by a mosquito-transmitted parasite (something humanity didn’t realize until the late 1800s), malaria is a serious and sometimes fatal disease that presents with symptoms including high fevers, chills, and flu-like symptoms. It also ravaged much of the known world, with cases occurring everywhere from southern Europe to Eastern China, killing tens of millions in the process.
Today, malaria still plagues over 100 countries and territories, and about half of the world’s population is at risk of contracting it, with the portions of Africa south of the Sahara and large swathes of Oceania being most affected due to their climate. Despite all of our efforts and modern medicine advances, malaria still kills around 2.7 million people a year, with most deaths happening in Africa and most of the victims being children under five. The sheer number of deaths is due in part to a lack of affordable and easily accessible treatments for Malaria in the Global South.
Humanity has long sought to understand malaria to fight and prevent it, which would allow them to save countless lives in the process. An early misconception of the disease’s etiology was that malaria was caused by “bad air” and miasmas rising from swamps – though after the discovery of bacteria and the development of germ theory, research went in a newer, more productive direction. This led to the discovery of parasites as the cause, mosquitos as the vector, and several new treatments. Simultaneously, researchers unlocked the secret of quinine and were able to distill it from cinchona bark (which has long been used as a treatment without an understanding of how it worked), greatly improving humanity’s access to this life-saving treatment.
At first, knowledge of malaria’s causes was used to exterminate malaria by cutting off the source of transmission: mosquitoes. Nation after nation engaged in large-scale extermination campaigns, deploying massive amounts of Dichlorodiphenyltrichloroethane (DDT) and other pesticides and often working to drain or destroy potential swamp breeding sites. While these efforts greatly reduced malaria’s range, natural immunities meant that spraying was often never fully successful in eradicating malaria-carrying mosquitoes, and the pesticides resulted in massive damage to nature captured by works such as “Silent Spring.” Because of this, people sought out new venues to exterminate malaria, namely vaccines that would let us prevent infection instead of putting us in an unwinnable battle with mosquitoes.
Developing A Vaccine:
Developing a malaria vaccine proved to be incredibly difficult, requiring nearly 60 years of intensive medical research primarily targeted at the most deadly and dangerous strain of malaria. This was due in large part to the difficulty of dealing with P. falciparum (the parasite that causes the aforementioned strain), which has an incredibly complex biology, life cycle and, genome, and because of the lack of natural immunity (outside of sickle cell anemia carriers) and how malaria evades the human immune system. Additionally, parasites as a whole are incredibly difficult to develop vaccines against due to the challenges of cultivating parasites in vitro, which has also led to a lack of other well-developed vaccines for parasite-caused diseases in humans.
To overcome these barriers, researchers gathered as many antigens as they could in hopes of finding a protein to target or some other attribute of malaria that they could target with a vaccine, a method that had historically proven successful in creating vaccines. Unfortunately, malaria proved to be too complex for this, forcing scientists to seek out new ways of creating immunity.
Sporozoites (a spore-like stage of the malaria life cycle) quickly became a focus, as vaccines focusing on this would allow the immune system to attack at the very beginning of infection, keeping malaria from spreading throughout the body. Circumsporozoite protein (CSP) – a major component of the sporozoite surface – was viewed as a particularly promising way of attacking the sporozoites.
The work that led to RTS,S/AS01 started in 1984 during a collaboration between Walter Reed Army Institute of Research and pharmaceutical company GSK, both of whom were trying to create malaria vaccines using attenuated sporozoites. Pre-clinical studies soon revealed that CSP inoculation could create antibodies that resisted malaria infection during the sporozoite stage, leading to efforts being refocused on this area. While there were initial hurdles in identifying and synthesizing the correct CSP antigen due to difficulties in producing an antigen of CSP’s size with existing technology, scientists were able to produce a working CSP and, with it, an effective malaria vaccine in 1987.
RTS,S/AS01 would then go through additional refinements and enhancements to maximize effectiveness, thanks in large part to funding from groups such as the Bill and Melinda Gates Foundation. The vaccine soon showed that it was well worth the investment, with a Phase 3 clinical efficacy and clinical trial conducted between 2009 and 2014 across seven countries showing incredible results. After inoculation, cases of malaria and severe malaria were reduced by 1 in 4 and 1 in 3, and a subsequent long-term impact study showed that the vaccine effects persisted to some extent with no long-term negative effects.
With the evidence of its success clear, RTS,S/AS01 was prequalified for use by WHO in July of 2022. With a vaccine discovered, the next step was to deploy it on a far larger scale than ever before.
Deploying the Vaccine:
While the vaccine had already been delivered on a smaller scale with help from the Malaria Vaccine Implementation Programme, manufacturing 18 million doses and deploying them en masse throughout Africa would require more money, more manufacturing, and more focus on logistics. Thankfully, Gavi, the Vaccine Alliance, WHO, UNICEF, and other organizations were both willing and able to continue to fund vaccine efforts and to lend logistic support.
Unfortunately, the inadequate supply of RTS,S/AS01 (though efforts are underway to increase supply) has forced nations and NGOs to make tough decisions about how much to distribute and to where it will be distributed. Under the current WHO framework, the ultimate priority is giving the vaccine to the nations with the greatest need, as defined by the burden of the disease in children and the risk of death. But even with questions regarding how many vaccines different nations will get somewhat settled, the storage requirements of RTS,S/AS01 will likely make deploying the vaccines to more remote locales either improbable or highly expensive.
Future Developments:
While we await to see hopefully positive effects of the large-scale rollout of RTS,S/AS01, new vaccines are already either in development or undergoing trials and will hopefully prove to be even more effective than RTS,S/AS01. Two of the most promising of these vaccines are the Oxford-developed R21 Vaccine and BNT165b1, a potential mRNA-based vaccine from BioNTech. R21 mixes the malaria parasite-specific R21 antigen developed by Oxford with a compound designed by Novavas to make the immune response even more effective. BNT165b1, on the other hand, hopes to use the same mRNA technique used to create the Pfizer-BioNTech Covid-19 vaccine to target Malaria.
Another potential venture with vaccine development for malaria is to target the other parasite strains. There are a total of five malaria-causing parasite strains that can affect humans, and while none are as dangerous as P. falciparum, they are still debilitating. There are also always new treatments for malaria in development that, while not capable of preventing malaria, will greatly improve the lives of the people with malaria. But no matter what direction the research takes, it will take us even closer to exterminating malaria, making life better in the process.
References:
- Cox, Francis EG. “History of the Discovery of the Malaria Parasites and Their Vectors.” Parasites & Vectors, vol. 3, no. 1, 1 Feb. 2010, p. 5, parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-3-5, https://doi.org/10.1186/1756-3305-3-5.
- Datoo, Mehreen S., et al. “Efficacy and Immunogenicity of R21/Matrix-M Vaccine against Clinical Malaria after 2 Years’ Follow-up in Children in Burkina Faso: A Phase 1/2b Randomised Controlled Trial.” The Lancet Infectious Diseases, vol. 0, no. 0, 7 Sept. 2022, www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00442-X/fulltext, https://doi.org/10.1016/S1473-3099(22)00442-X.
- DuRose, Rachel. “We Finally Have Malaria Vaccines. The next Hurdle: Distributing Them.” Vox, 11 June 2023, www.vox.com/future-perfect/23755531/malaria-vaccines-progress-logistics-challenges-africa. Accessed 23 Sept. 2023.
- El-Moamly, Amal A, and Mohamed A El-Sweify. “Malaria Vaccines: The 60-Year Journey of Hope and Final Success—Lessons Learned and Future Prospects.” Tropical Medicine and Health, vol. 51, no. 1, 17 May 2023, https://doi.org/10.1186/s41182-023-00516-w.
- Framework for the Allocation of Limited Malaria Vaccine Supply. World Health Organization, 2022.
- Haberman, Clyde. “Rachel Carson, DDT and the Fight against Malaria.” The New York Times, 22 Jan. 2017, www.nytimes.com/2017/01/22/us/rachel-carson-ddt-malaria-retro-report.html.
- Merle, Corinne, et al. “Implementation Strategies for the Introduction of the RTS,S/AS01 (RTS,S) Malaria Vaccine in Countries with Areas of Highly Seasonal Transmission: Workshop Meeting Report.” Malaria Journal, vol. 22, no. 1, 23 Aug. 2023, https://doi.org/10.1186/s12936-023-04657-5. Accessed 9 Sept. 2023.
- “PATH Welcomes WHO Prequalification of the First Malaria Vaccine.” PATH’s Malaria Vaccine Initiative, 13 Sept. 2022, www.malariavaccine.org/news-events/news/path-welcomes-who-prequalification-first-malaria-vaccine.
- Prevention, CDC-Centers for Disease Control and. “CDC - Malaria - FAQs.” Www.cdc.gov, CDC, 13 Mar. 2020, www.cdc.gov/malaria/about/faqs.html#:~:text=The%20Disease.
- “Q&A on RTS,S Malaria Vaccine.” Www.who.int, WHO, 21 Apr. 2022, www.who.int/news-room/questions-and-answers/item/q-a-on-rts-s-malaria-vaccine.
- Reuters. “BioNTech Starts Human Trial to Test Malaria Vaccine.” Reuters, 23 Dec. 2022, www.reuters.com/business/healthcare-pharmaceuticals/biontech-initiates-clinical-trial-mrna-based-malaria-vaccine-candidate-2022-12-23/.
- Samba, Ebrahim. The Malaria Burden and Africa. Www.ncbi.nlm.nih.gov, American Society of Tropical Medicine and Hygiene, 1 Jan. 2001, www.ncbi.nlm.nih.gov/books/NBK2620/#:~:text=The%20consensus%20of%20scientists%20and.
- “Scientific Breakthrough Harnesses MRNA Technology to Develop Powerful Malaria Vaccine.” Www.doherty.edu.au, The Doherty Institute, 21 July 2023, www.doherty.edu.au/news-events/news/mrna-technology-to-develop-powerful-malaria-vaccine#:~:text=A%20new%20mRNA%20vaccine%20targeting. Accessed 23 Sept
Vacunas contra la Malaria: Un Paso Más Cerca de Vencer la Malaria
Zev van Zanten
Ninoshka Garcia , Anna Argenziano
Durante los próximos dos años, se distribuirán en África más de casi 18 millones de dosis salvavidas de la vacuna RTS,S/AS01, la primera vacuna contra la malaria en la historia. Aunque es probable que los problemas que han afectado su implementación continúen, la liberación generalizada de esta vacuna (y el desarrollo continuo de nuevas vacunas) sigue siendo el mejor arma de la humanidad en la lucha para erradicar la malaria.
La malaria y nuestra historia con ella:
La malaria ha afectado a la humanidad desde hace mucho tiempo, con casos (o al menos lo que se asume que son casos basados en los síntomas) reportados desde el año 2700 a.C. Causada por un parásito transmitido por mosquitos (algo que la humanidad no conocía hasta finales del siglo XIX), la malaria es una enfermedad grave y a veces mortal que presenta síntomas como fiebres altas, escalofríos y síntomas similares a los de la gripe. Además, devastó gran parte del mundo conocido, con casos en todas partes, desde el sur de Europa hasta el este de China, matando a decenas de millones en el proceso.
Hoy en día, la malaria sigue afectando a más de 100 países y territorios, y alrededor de la mitad de la población mundial está en riesgo de contraerla, siendo las zonas al sur del Sahara en África y gran parte de Oceanía las más afectadas debido a su clima. A pesar de todos nuestros esfuerzos y los avances en la medicina moderna, la malaria todavía mata a unas 2.7 millones de personas al año, con la mayoría de las muertes ocurriendo en África y siendo la mayoría de las víctimas niños menores de cinco años. La cantidad abrumadora de muertes se debe en parte a la falta de tratamientos asequibles y de fácil acceso en el Sur Global.
La humanidad ha buscado entender la malaria desde hace mucho para combatirla y prevenirla, permitiendo salvar innumerables vidas en el proceso. Una concepción errónea temprana sobre la etiología de la enfermedad era que la malaria era causada por el "mal aire" y las miasmas que emanaba de los pantanos, pero después del descubrimiento de las bacterias y el desarrollo de la teoría germinal, la investigación tomó una dirección nueva y más productiva. Esto llevó al descubrimiento de los parásitos como causa de la malaria, los mosquitos como el vector, y a la creación de varios tratamientos nuevos. Simultáneamente, los investigadores descubrieron el secreto de la quinina y lograron destilarla de la corteza de cinchona (que se había utilizado durante mucho tiempo como tratamiento sin comprender cómo funcionaba), mejorando enormemente el acceso de la humanidad a este tratamiento salvavidas.
Al principio, el conocimiento sobre las causas de la malaria se utilizó para exterminar la malaria cortando la fuente de transmisión: los mosquitos. Nación tras nación emprendió campañas de exterminio a gran escala, desplegando grandes cantidades de DDT (Dicloro-Difenil-Tricloroetano) y otros pesticidas, y a menudo trabajando para drenar o destruir posibles criaderos de mosquitos en pantanos. Aunque estos esfuerzos redujeron en gran medida el alcance de la malaria, las inmunidades naturales hicieron que la fumigación nunca fuera completamente exitosa en la erradicación de los mosquitos portadores de malaria, y los pesticidas causaron enormes daños a la naturaleza, capturados por obras como "Primavera Silenciosa". Debido a esto, la gente buscó nuevas vías para erradicar la malaria, en particular, vacunas que nos permitieran prevenir la infección en lugar de librar una batalla interminable contra los mosquitos.
Desarrollo de una vacuna:
Desarrollar una vacuna contra la malaria resultó ser increíblemente difícil, requiriendo casi 60 años de intensa investigación médica dirigida principalmente a la cepa más mortal y peligrosa de malaria. Esto se debió en gran parte a la dificultad de tratar con Plasmodium falciparum (el parásito que causa dicha cepa), que tiene una biología, ciclo de vida y genoma increíblemente complejos, así como a la falta de inmunidad natural (excepto en portadores de anemia falciforme) y la capacidad de la malaria para evadir el sistema inmunológico humano. Además, los parásitos en general son increíblemente difíciles de desarrollar vacunas debido a los desafíos de cultivarlos in vitro, lo que también ha llevado a la falta de otras vacunas bien desarrolladas para enfermedades causadas por parásitos en humanos.
Para superar estas dificultades, los investigadores reunieron tantos antígenos como pudieron con la esperanza de encontrar una proteína u otra característica del parásito que pudieran atacar con una vacuna, un método que históricamente había demostrado ser exitoso. Desafortunadamente, la malaria resultó ser demasiado compleja, lo que obligó a los científicos a buscar nuevas formas de crear inmunidad.
Los esporozoítos (una etapa similar a una espora en el ciclo de vida de la malaria) rápidamente se convirtieron en un enfoque, ya que las vacunas centradas en ellos permitirían al sistema inmunológico atacar al principio de la infección, impidiendo que la malaria se propague por el cuerpo. La proteína circunsporozoitaria (CSP), un componente importante de la superficie del esporozoíto, se consideró una forma particularmente prometedora de atacar los esporozoítos.
El trabajo que llevó al desarrollo de la vacuna RTS,S/AS01 comenzó en 1984 durante una colaboración entre el Instituto de Investigación del Ejército Walter Reed y la farmacéutica GSK, ambos intentando crear vacunas contra la malaria utilizando esporozoítos atenuados. Los estudios preclínicos pronto revelaron que la inoculación con CSP podía crear anticuerpos que resistían la infección por malaria durante la etapa de esporozoíto, lo que llevó a concentrar los esfuerzos en esta área. A pesar de los obstáculos iniciales en la identificación y síntesis del antígeno CSP adecuado debido a las dificultades tecnológicas de la época, los científicos lograron producir una CSP funcional y, con ella, una vacuna efectiva contra la malaria en 1987.
La RTS,S/AS01 luego pasó por refinamientos adicionales para maximizar su efectividad, gracias en gran parte al financiamiento de grupos como la Fundación Bill y Melinda Gates. La vacuna pronto demostró que valía la inversión, con un ensayo de fase 3 entre 2009 y 2014 en siete países que mostró resultados impresionantes. Tras la inoculación, los casos de malaria y malaria grave se redujeron en 1 de cada 4 y 1 de cada 3 respectivamente, y un estudio posterior mostró que los efectos de la vacuna persistían hasta cierto punto sin efectos negativos a largo plazo.
Con la evidencia de su éxito clara, la RTS,S/AS01 fue pre-aprobada por la OMS en julio de 2022. Con una vacuna descubierta, el siguiente paso fue desplegarla a una escala mucho mayor.
Despliegue de la vacuna:
Aunque la vacuna ya se había entregado a pequeña escala con la ayuda del Programa de Implementación de Vacunas contra la Malaria, la fabricación de 18 millones de dosis y su distribución masiva en África requeriría más fondos, mayor capacidad de producción y un mayor enfoque en la logística. Afortunadamente, Gavi, la Alianza para las Vacunas, la OMS, UNICEF y otras organizaciones estuvieron dispuestas y fueron capaces de continuar financiando los esfuerzos y apoyando logísticamente.
Desafortunadamente, el suministro insuficiente de la RTS,S/AS01 (aunque se están realizando esfuerzos para aumentarlo) ha obligado a las naciones y ONG a tomar decisiones difíciles sobre cuánto distribuir y a dónde. Bajo el marco actual de la OMS, la prioridad principal es dar la vacuna a las naciones con mayor necesidad, definida por la carga de la enfermedad en los niños y el riesgo de muerte. Sin embargo, los requisitos de almacenamiento de la RTS,S/AS01 probablemente hagan que desplegar las vacunas en lugares remotos sea improbable o muy costoso.
Desarrollos futuros:
Mientras esperamos ver los efectos positivos del despliegue a gran escala de la RTS,S/AS01, ya se están desarrollando o probando nuevas vacunas que, con suerte, serán aún más efectivas. Dos de las vacunas más prometedoras son la R21, desarrollada por Oxford, y la BNT165b1, una posible vacuna de ARNm de BioNTech. La R21 mezcla un antígeno específico del parásito de la malaria con un compuesto diseñado por Novavax para hacer la respuesta inmunitaria más eficaz. Por otro lado, la BNT165b1 espera usar la misma técnica de ARNm que se utilizó en la vacuna Pfizer-BioNTech contra la COVID-19 para atacar la malaria.
Otro posible enfoque en el desarrollo de vacunas contra la malaria es atacar otras cepas de parásitos. Hay un total de cinco cepas de parásitos causantes de malaria que pueden afectar a los humanos, y aunque ninguna es tan peligrosa como P. falciparum, siguen siendo debilitantes. También se están desarrollando nuevos tratamientos que, aunque no pueden prevenir la malaria, mejorarán significativamente la vida de quienes la padecen. Pero sin importar la dirección que tome la investigación, nos acercará aún más a la erradicación de la malaria, mejorando la vida en el proceso.
Referencias:
- Cox, Francis EG. “History of the Discovery of the Malaria Parasites and Their Vectors.” Parasites & Vectors, vol. 3, no. 1, 1 Feb. 2010, p. 5, parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-3-5, https://doi.org/10.1186/1756-3305-3-5.
- Datoo, Mehreen S., et al. “Efficacy and Immunogenicity of R21/Matrix-M Vaccine against Clinical Malaria after 2 Years’ Follow-up in Children in Burkina Faso: A Phase 1/2b Randomised Controlled Trial.” The Lancet Infectious Diseases, vol. 0, no. 0, 7 Sept. 2022, www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00442-X/fulltext, https://doi.org/10.1016/S1473-3099(22)00442-X.
- DuRose, Rachel. “We Finally Have Malaria Vaccines. The next Hurdle: Distributing Them.” Vox, 11 June 2023, www.vox.com/future-perfect/23755531/malaria-vaccines-progress-logistics-challenges-africa. Accessed 23 Sept. 2023.
- El-Moamly, Amal A, and Mohamed A El-Sweify. “Malaria Vaccines: The 60-Year Journey of Hope and Final Success—Lessons Learned and Future Prospects.” Tropical Medicine and Health, vol. 51, no. 1, 17 May 2023, https://doi.org/10.1186/s41182-023-00516-w.
- Framework for the Allocation of Limited Malaria Vaccine Supply. World Health Organization, 2022.
- Haberman, Clyde. “Rachel Carson, DDT and the Fight against Malaria.” The New York Times, 22 Jan. 2017, www.nytimes.com/2017/01/22/us/rachel-carson-ddt-malaria-retro-report.html.
- Merle, Corinne, et al. “Implementation Strategies for the Introduction of the RTS,S/AS01 (RTS,S) Malaria Vaccine in Countries with Areas of Highly Seasonal Transmission: Workshop Meeting Report.” Malaria Journal, vol. 22, no. 1, 23 Aug. 2023, https://doi.org/10.1186/s12936-023-04657-5. Accessed 9 Sept. 2023.
- “PATH Welcomes WHO Prequalification of the First Malaria Vaccine.” PATH’s Malaria Vaccine Initiative, 13 Sept. 2022, www.malariavaccine.org/news-events/news/path-welcomes-who-prequalification-first-malaria-vaccine.
- Prevention, CDC-Centers for Disease Control and. “CDC - Malaria - FAQs.” Www.cdc.gov, CDC, 13 Mar. 2020, www.cdc.gov/malaria/about/faqs.html#:~:text=The%20Disease.
- “Q&A on RTS,S Malaria Vaccine.” Www.who.int, WHO, 21 Apr. 2022, www.who.int/news-room/questions-and-answers/item/q-a-on-rts-s-malaria-vaccine.
- Reuters. “BioNTech Starts Human Trial to Test Malaria Vaccine.” Reuters, 23 Dec. 2022, www.reuters.com/business/healthcare-pharmaceuticals/biontech-initiates-clinical-trial-mrna-based-malaria-vaccine-candidate-2022-12-23/.
- Samba, Ebrahim. The Malaria Burden and Africa. Www.ncbi.nlm.nih.gov, American Society of Tropical Medicine and Hygiene, 1 Jan. 2001, www.ncbi.nlm.nih.gov/books/NBK2620/#:~:text=The%20consensus%20of%20scientists%20and.
- “Scientific Breakthrough Harnesses MRNA Technology to Develop Powerful Malaria Vaccine.” Www.doherty.edu.au, The Doherty Institute, 21 July 2023, www.doherty.edu.au/news-events/news/mrna-technology-to-develop-powerful-malaria-vaccine#:~:text=A%20new%20mRNA%20vaccine%20targeting. Accessed 23 Sept. 2023.
疟疾疫苗: 向战胜疟疾又迈进了一步
Zev van Zanten
Bevery Yuen, Yihe Liang
未来两年内,将有近 1800 万剂 RTS, S/AS01(有史以来第一种疟疾疫苗)在非洲各地分发,去拯救生命。虽然迄今为止,疫苗推广的阻碍很大程度会继续存在,但广泛推广这种疫苗(以及新疫苗的不断开发)仍然是人类在消灭疟疾的最佳武器。
疟疾及其历史:
疟疾长期以来一直困扰着人类,早在公元前 2700 年就有病例(或者至少我们根据症状推测是病例)。疟疾是由蚊子传播的寄生虫引起的(直到 19 世纪末人类才意识到这一点)。它是一种严重且可能致命的疾病,其症状包括高烧、发冷和类似流感的症状。它还肆虐了已知世界的大部分地区,从南欧到中国东部各地都有病例发生,导致数千万人死亡。
如今,疟疾仍然困扰着 100 多个国家和地区,全球约有一半人口面临感染疟疾的风险,其中撒哈拉以南非洲部分地区和大洋洲大部分地区受气候影响最大。尽管我们付出了所有努力,现代医学也取得了进步,但疟疾每年仍导致约 270 万人死亡。其中死亡人数最高的是非洲,并且大多数感染者是五岁以下儿童。死亡人数之多,部分原因是南半球国家缺乏负担得起且易于获得的疟疾治疗方法。
长期以来,人类一直在寻求了解疟疾以对抗和预防它,从而拯救无数生命。早期人们误以为疟疾是由'污浊的空气'和沼泽中的瘴气引起的——但在发现细菌和发展细菌理论之后,研究朝着更新、更有成效的方向发展。这导致人们发现寄生虫是疟疾的病因,蚊子是媒介,并发现了几种新的治疗方法。与此同时,研究人员揭开了奎宁的秘密,并能够从金鸡纳树皮(长期以来一直被用作治疗手段,但人们并不了解其作用原理)中提取奎宁,大大提高人类获得治疗的机会。
起初,人们用对疟疾病因的了解,通过切断传播源头——蚊子——来消灭疟疾。一个又一个国家展开了大规模的灭绝运动,使用大量二氯二苯三氯乙烷(DDT)和其他杀虫剂,并努力排干或摧毁潜在的沼泽繁殖地。虽然这些努力大大缩小了疟疾的传播范围,,但由于人体具有天然免疫力,喷洒杀虫剂往往无法完全消灭携带疟疾的蚊子,而杀虫剂对自然造成了巨大破坏, 《寂静的春天》等作品就捕捉到了这一点。正因为如此,人们开始寻找消灭疟疾的新途径,即开发可以预防感染的疫苗,而不是让我们陷入与蚊子的一场无法获胜的战斗。
开发疫苗:
事实证明,开发疟疾疫苗极其困难,需要近 60 年的深入医学研究,主要针对最致命和最危险的疟疾菌株。这在很大程度上是由于处理恶性疟原虫(引起上述菌株的寄生虫)的困难,其具有极其复杂的生物学、生命周期和基因组,并且由于缺乏天然免疫力(镰状疟原虫之外) 细胞贫血携带者)以及疟疾如何逃避人类免疫系统。此外,由于体外培养寄生虫的挑战,寄生虫作为一个整体极难开发疫苗,这也导致缺乏其他成熟的疫苗来治疗人类寄生虫引起的疾病。
为了克服这些障碍,研究人员收集了尽可能多的抗原,希望找到一种蛋白质或疟疾的其他属性,以便用疫苗来针对,这种方法在历史上已被证明可以成功地制造疫苗。不幸的是,事实证明疟疾过于复杂,迫使科学家寻找创造免疫力的新方法。
子孢子(疟疾生命周期中类似孢子的阶段)很快成为重点关注对象,因为针对子孢子的疫苗可以让免疫系统在感染初期发起攻击,防止疟疾扩散到全身。环子孢子蛋白(CSP)是子孢子表面的主要成分,被认为是一种特别有潜力的攻击子孢子的方法。
RTS,S/AS01 的研发工作始于 1984 年,当时沃尔特里德陆军研究所和制药公司葛兰素史克合作,两家公司都试图利用减毒子孢子制造疟疾疫苗。临床前研究很快发现,环子孢子蛋白接种可以在子孢子阶段产生抵抗疟疾感染的抗体,这导致人们重新集中在这一领域。尽管因现有技术难以生产出环子孢子蛋白大小的抗原,在识别和合成正确的环子孢子蛋白抗原方面,最初存在障碍,但科学家们还是在 1987 年生产出有效的环子孢子蛋白并利用它生产出有效的疟疾疫苗。
随后,RTS,S/AS01经过进一步的改良和增强,以最大限度地提高效力,这也在很大程度上要归功于比尔和梅琳达盖茨基金会等组织的资助。事实证明,在该疫苗的投资是值得的。2009 年至 2014 年间,在七个国家进行的第 3 期临床疗效和临床试验显示出了令人难以置信的效果。接种后,疟疾和重度疟疾的病例分别减少了四分之一和三分之一,随后的长期影响研究表明,疫苗在一定程度上持续有效,没有长期负面影响。
凭借成功检验的证明,RTS,S/AS01 于 2022 年 7 月通过了世卫组织的预审。疫苗研发后,下一步就是进行比以往更大规模地部署。
疫苗的部署:
虽然在疟疾疫苗实施计划的帮助下,疫苗已经小规模地投入使用,但生产 1800 万剂疫苗并在整个非洲大规模部署需要更多的资金、更多的批量制造和更加注重物流。值得庆幸的是,全球疫苗免疫联盟、疫苗联盟、世卫组织、联合国儿童基金会和其他组织都愿意并继续资助疫苗工作和提供后勤支持。
不幸的是,RTS,S/AS01 的供应不足(尽管正在努力增加供应量)迫使各国和非政府组织就分发数量和分发地点做出艰难的决定。根据目前的世卫组织框架,最终的优先事项是将疫苗提供给最需要的国家,这些国家是根据儿童疾病负担和死亡风险来定义的。但即使关于不同国家将获得多少疫苗的问题有所解决,RTS,S/AS01 的存储要求也使将疫苗部署到更偏远地区变得不可能或成本高昂。
未来发展:
在我们等待 RTS,S/AS01 大规模推广的积极影响的同时,新疫苗已经在开发或试验中,有望证明比 RTS,S/AS01 更有效。其中最有希望的两种疫苗是牛津开发的 R21 疫苗和生物新技术公司研发的基于信使核糖核酸(mRNA)的潜在疫苗 BNT165b1 。R21 疫苗将牛津开发的疟疾寄生虫特异性 R21 抗原与诺瓦瓦克斯(Novavas) 设计的化合物混合在一起,使免疫反应更加有效。另一方面,BNT165b1 希望使用与辉瑞新冠疫苗相同的信使核糖核酸技术来针对疟疾。
疟疾疫苗研发的另一个潜在目的是针对其他寄生虫菌株。总共有五种疟疾寄生虫菌株可以感染人类,虽然没有一种像恶性疟原虫那样危险,但它们仍然会让人虚弱。此外,还有新的疟疾治疗方法在研发中,虽然这些治疗方法无法预防疟疾,但可以大大改善疟疾患者的生活。但无论研究朝哪个方向发展,疫苗研发都会让我们更接近消灭疟疾的目标,从而让生活变得更好。
来源
- Cox, Francis EG. “History of the Discovery of the Malaria Parasites and Their Vectors.” Parasites & Vectors, vol. 3, no. 1, 1 Feb. 2010, p. 5,
- parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-3-5, https://doi.org/10.1186/1756-3305-3-5.
- Datoo, Mehreen S., et al. “Efficacy and Immunogenicity of R21/Matrix-M Vaccine against Clinical Malaria after 2 Years’ Follow-up in Children in Burkina Faso: A Phase 1/2b Randomised Controlled Trial.” The Lancet Infectious Diseases, vol. 0, no. 0, 7 Sept. 2022, www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00442-X/fulltext, https://doi.org/10.1016/S1473-3099(22)00442-X.
- DuRose, Rachel. “We Finally Have Malaria Vaccines. The next Hurdle: Distributing Them.” Vox, 11 June 2023, www.vox.com/future-perfect/23755531/malaria-vaccines-progress-logistics-challenges-africa. Accessed 23 Sept. 2023.
- El-Moamly, Amal A, and Mohamed A El-Sweify. “Malaria Vaccines: The 60-Year Journey of Hope and Final Success—Lessons Learned and Future Prospects.” Tropical Medicine and Health, vol. 51, no. 1, 17 May 2023, https://doi.org/10.1186/s41182-023-00516-w.
- Framework for the Allocation of Limited Malaria Vaccine Supply. World Health Organization, 2022.
- Haberman, Clyde. “Rachel Carson, DDT and the Fight against Malaria.” The New York Times, 22 Jan. 2017, www.nytimes.com/2017/01/22/us/rachel-carson-ddt-malaria-retro-report.html.
- Merle, Corinne, et al. “Implementation Strategies for the Introduction of the RTS,S/AS01 (RTS,S) Malaria Vaccine in Countries with Areas of Highly Seasonal Transmission: Workshop Meeting Report.” Malaria Journal, vol. 22, no. 1, 23 Aug. 2023, https://doi.org/10.1186/s12936-023-04657-5. Accessed 9 Sept. 2023.
- “PATH Welcomes WHO Prequalification of the First Malaria Vaccine.” PATH’s Malaria Vaccine Initiative, 13 Sept. 2022, www.malariavaccine.org/news-events/news/path-welcomes-who-prequalification-first-malaria-vaccine.
- Prevention, CDC-Centers for Disease Control and. “CDC - Malaria - FAQs.” Www.cdc.gov, CDC, 13 Mar. 2020, www.cdc.gov/malaria/about/faqs.html#:~:text=The%20Disease.
- “Q&A on RTS,S Malaria Vaccine.” Www.who.int, WHO, 21 Apr. 2022, www.who.int/news-room/questions-and-answers/item/q-a-on-rts-s-malaria-vaccine.
- Reuters. “BioNTech Starts Human Trial to Test Malaria Vaccine.” Reuters, 23 Dec. 2022, www.reuters.com/business/healthcare-pharmaceuticals/biontech-initiates-clinical-trial-mrna-based-malaria-vaccine-candidate-2022-12-23/.
- Samba, Ebrahim. The Malaria Burden and Africa. Www.ncbi.nlm.nih.gov, American Society of Tropical Medicine and Hygiene, 1 Jan. 2001, www.ncbi.nlm.nih.gov/books/NBK2620/#:~:text=The%20consensus%20of%20scientists%20and.
- “Scientific Breakthrough Harnesses MRNA Technology to Develop Powerful Malaria Vaccine.” Www.doherty.edu.au, The Doherty Institute, 21 July 2023, www.doherty.edu.au/news-events/news/mrna-technology-to-develop-powerful-malaria-vaccine#:~:text=A%20new%20mRNA%20vaccine%20targeting. Accessed 23 Sept. 2023.