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Abstract 

In experimental studies of phase relations in chemical, ceramic, metallurgical, and mineralogical 
systems, it is fairly rare for pressure-temperature (P-T) diagrams to be fully mapped, i.e. with all the 
univariant lines directly determined. This typically requires an extraordinarily large number of experiments; 
in many cases this is impractical or, due to extreme temperature or pressure conditions, sluggish kinetics, 
or other considerations, effectively impossible. Even if the availability of thermodynamic data allows the 
slopes of such univariant curves to be calculated, there remains a possibility that such data are not 
always mutually consistent. Fortunately, in a series of classic monographs published in Dutch between 
1915 and 1925, F.A.H Schreinemakers derived and demonstrated the usefulness of a set of rules which 
is aptly suited to overcoming this problem. When some subset of the n+2 univariant lines that meet at an 
invariant point in an n-component system are known, this set of topologically-governed principles, which 
later came to be known as Schreinemakers rules, not only allows the determination of the location of 
remaining univariant lines, it also provides insights into the stability of divariant assemblages around the 
invariant point at various temperatures and pressures. In this paper, we review the 180° rule, overlap rule 
and half-plane rule, all of which make up Schreinemakers rules, and show how they can be applied to a 
ternary non-degenerate system where five phases coexist at an invariant point. 
 
Introduction  

A ternary chemical system can be 
completely described and visualized only in a five-
dimensional space, where intensive Gibbs free 
energy, G, can be plotted as a function of the four 
independent variables pressure (P), temperature 
(T), and two compositional variables such as the 
mass fractions of components 1 and 2. Of course, 
few people can easily imagine five-dimensional 
relations. It is therefore necessary to consider 
partial representations of the relations that can be 
shown as three-dimensional or, better, two-
dimensional plots on a computer screen, 
blackboard, or paper. For example, we might hold 
pressure and temperature constant and make a 
map of minimum Gibbs energy assemblages in 
composition space, often represented as a triangle 
whose vertices are the three components of the 
ternary system. On the other hand, we might 
project reaction lines and points where various 
combinations of phases have equal Gibbs energy 
at particular compositions onto the P-T plane. 
However, it is important to remember that these 
two-dimensional plots are both reduced 
representations of the original five-dimensional 
relations, and as such they are not independent of 
one another. There are systematic rules governing 
how the distribution of phases in composition 
space (which we call the chemography) affects the 
layout of reaction curves in (P, T) space. The 
purpose of this review is to describe these rules, 
so that the discerning scientist may appreciate 
how to distinguish legal from illegal phase 
diagrams and to predict aspects of phase 

diagrams that have not been (or cannot be) 
computed or measured experimentally. 
 
Invariant, Univariant, and Divariant 
Assemblages 
We need to begin with some remarks on what we 
mean by stable, metastable, and equilibrium. 
Elementary thermodynamics demonstrates that 
the stable state of a chemical system at prescribed 
pressure, temperature, and chemical composition 
is that with the minimum value of the intensive 
Gibbs free energy. Thermodynamics also shows 
that a necessary condition for a heterogeneous 
system (that is, one containing more than one 
coexisting phase) to achieve a state of minimum G 
is that the chemical potential (that is, the partial 
molar Gibbs free energy) of each component must 
be equal among all the phases, i.e. (Equation 1). 
This is because, if chemical potential of any 

component differs between phases, then the 
overall G of the system can be lowered by 
transferring some mass of that component from 
the high chemical potential phase to the low 
chemical potential phase. Note, however, that 
equality of chemical potentials among phases is 
not sufficient to establish a minimum in G. These 
considerations require some care in terminology. 
When we say here that an assemblage of phases 
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Equation #3 

is stable, we mean that at a given pressure, 
temperature, and composition it has lower G than 
any other assemblage of phases that could exist 
there. On the other hand, when we say two (or 
more) different phases are in equilibrium with one 
another at some pressure and temperature, we 
mean that the chemical potential of each 
component among all those phases is equal. If 
there are two (or more) phases in equilibrium and, 
furthermore, the value of G of the assemblage at 
some composition is also the lowest among all 
possible assemblages at that composition, then 
we say that this is a stable assemblage and the 
equilibrium is a stable equilibrium. The remaining 
possibility is also quite important in this review: 
when two or more phases are in equilibrium but 
there exists still another assemblage of phases 
that could constitute the given composition and 
whose value of G is lower, then we have a 
metastable assemblage and this equilibrium is a 
metastable equilibrium. 

In a system consisting of n-components at 
chemical equilibrium, the Gibbs phase rule 
provides the variance, or number of degrees of 
freedom, f, as n-φ+2-(other constraints), where φ 
is the number of phases that are in equilibrium 
with one another, while other constraints refers to 
the presence of coincidences, singular points, 
collinearities, critical phenomena or other forms of 
degeneracy which can lower the variance of the 
equilibrium assemblage. In the absence of 
degeneracies, the Gibbs phase rule is reduced to f 
= n-φ+2. Therefore, for an assemblage to be 
thermodynamically invariant, f=0, n+2 phases 
must be in equilibrium with each other. Similarly, 
an assemblage of n+1 phases at equilibrium is 
univariant, f=1, while an assemblage of n phases 
at equilibrium is divariant, f=2. Note that the Gibbs 
phase rule applies to assemblages of phases in 
equilibrium with each another; it does not depend 
on whether these assemblages are stable or 
metastable. 

The number of different assemblages of a 
given variance is given by the number of 
combinations of the appropriate number of phases 

that can be drawn from the original n+2 phases 
(Equation 2).  
 
Invariance 
Consider an n-component system which consists 
of a total of n+2 phases, there can only be one 
possible combination of phases which can result in 

invariance (as mentioned, n+2 phases are 
needed) according to the combinatorial formula, 
n+2

Cn+2 =1. 
Pressure and temperature are examples 

of intensive parameters that might be free to vary 
while keeping the same set of phases in the 
equilibrium assemblage. If the variance is zero, 
then, both pressure and temperature are 
determined, and cannot vary. As such, the 
invariant equilibrium can be presented on a P-T 
diagram as a single point, commonly known as the 
invariant point. The compositions of the phases 
(that is, the fraction of each of the n chemical 
components out of the total mass of each phase) 
are also intensive parameters that might vary 
while keeping the set of coexisting phases fixed 
but, again, at an invariant point they are all 
determined. Hence, there is a definite set of 
compositions characterizing each of the n+2 
phases at equilibrium at the invariant point. We will 
take advantage of this property of fixed phase 
compositions at the invariant point below when we 
plot chemographic relations at and around the 
invariant point. 
 
Univariance 
Univariance, on the other hand, requires a total of 
n+1phases, thereby giving a total of n+2 possible 
combinations of univariant assemblages of n+1 

phases, each derived from the invariant 
assemblage by subtracting one phase (Equation 
3).  

On the P-T diagram, these n+2 univariant 
conditions are presented as n+2 lines (or curves) 
passing through the invariant point. Now, 
assuming the invariant point itself is stable, each 
of these univariant assemblages changes from 
stable to metastable as it passes through the 
invariant point, such that there are n+2 stable 
univariant lines (represented by solid lines) 
emanating from the invariant point and, opposite 
these, n+2 metastable extensions (represented by 
dashed lines). 
 
Divariance 
Applying the combinatorial formula again for the 
divariant condition, a total of (n+1)(n+2)/2 
combinations of divariant assemblages of n 
phases are possible, each derived from the 
invariant assemblage by deleting two phases  
(Equation 4).  
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Figure 1: Univariant line [E] representing 
reaction A+B=C+D (phase E not involved). The 
stable portion of the univariant line is shown as a 
solid line while the metastable portion is shown 
as a dashed line.  

 

Each divariant condition is stable on the P-

T diagram in a sector of the circle surrounding the 
invariant point (again, assuming the invariant point 
itself is stable). These sectors are bounded by the 
stable parts of univariant lines. The conditions 
defining these sectors – how large an arc of the 
circle they can occupy, and which univariant lines 
they can cross – were laid out by F.A.H. 
Schreinemakers in a series of classic monographs 
published in Dutch around 1915 . Our purpose 
here is to explain how these rules result from the 
topology of continuous surfaces intersecting in 
free energy space, to show how they determine 
the arrangement of all the stable and metastable 
univariant and divariant equilibria where they 
intersect at an invariant point in P-T space, and 
finally to understand the relationship of this 
arrangement to the positions of the participating 
phases in composition space (“chemography”).    
 
Non-Degenerate Ternary Systems 
Applying the Gibbs phase rule and Equation 1 to a 
non-degenerate ternary system (n=3) of 5 phases, 
it becomes obvious that this system may include 
an invariant assemblage consisting of 5 phases 
which is the intersection of 5 univariant 
assemblages of 4 phases each and 10 divariant 
assemblages of 3 phases each. In composition 
space, each divariant assemblage is represented 
by a triangle whose three vertices are the 
compositions of the three phases that coexist in 
the divariant equilibrium. We will show 
representations of stable configurations in 
composition space, chemographs, by plotting only 
the triangles representing stable divariant 
assemblages at particular P, T conditions. The P-T 
diagram may thus show an invariant point, also 
known as a quintuple point, and 5 univariant lines 
with their stable and metastable portions. Apart 
from the invariant point and univariant lines, it is 
also possible to graphically identify the 10 sectors 
representing the divariant assemblages on the P-T 
diagram. A set of rules identified by 
Schreinemakers is particularly useful at this point 
in order to proceed further with the graphical 
representation of the information gathered thus far 
on a P-T diagram. Using Schreinemakers rules, 
the relative locations of the univariant curves can 
be determined such that even a simple hand-
drawing based on little experimental data can 
accurately constrain certain key features of actual 
unknown P-T diagrams. This is important 

because, although many univariant lines and their 
respective invariant points have been 
experimentally determined for both naturally 
occurring and synthetic systems, it is an enormous 
amount of tedious and often expensive work to 
fully map the P-T diagram of a multi-component 
chemical system. In some cases key parts of the 
diagram may be beyond the conditions that can be 
achieved experimentally. It is equally true that 
calculations of phase stability, for example from 
density functional theory or other ab initio 
methods, are tedious and expensive and it is very 
helpful to have a tool for confidently constructing 
complete, topologically correct, diagrams based 
on the minimum number of calculations.  

Consider a ternary system involving 5 
phases, A, B, C, D, and E. The first step in the 
construction of the P-T diagram is to determine the 
location of a univariant line and to correctly label 
the sides of the stable portions of this line 
according to the reaction it represents. 

Figure 1 shows an example of the correct labeling 
of a univariant line which represents the reaction 
A+B=C+D. In addition, phase E (shown in square 
brackets), which does not participate in the 
reaction, has been used to identify this univariant 
line. Since (see above) each univariant 
assemblage is found by deleting exactly one 
phase from the invariant set, identifying each 
univariant curve by the missing phase is unique 
and convenient.   
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Figure 2: Chemograph of the MgO-Al2O3-SiO2 
ternary system at the quintuple point. (A) 
forsterite, Mg2SiO4, (B) sillimanite, Al2SiO5, (C) 
cordierite, Mg2Al4Si5O18, (D) spinel, MgAl2O4, and 
(E) clinoenstatite, MgSiO3 

 

Figure 3: Possible arrangements of five phases 
in a non-degenerate ternary system. (a.) 
Pentagonal with all interior angles less than 180°, 
(b.) Quadrilateral with an interior point not falling 
on the diagonals, and (c.) Triangular with interior 
points neither collinear with any of the vertices 
of the triangle nor coincident with each other. 

 

Figure 4a 

 

The relative locations of the other 
univariant lines [A], [B], [C], and [D] can now be 
determined based on Schreinemakers rules. This 
set of rules is best explained here through a real 
example using the MgO-Al2O3-SiO2 ternary system 
in the vicinity of the invariant point where the 5 
coexisting phases are (A) forsterite, Mg2SiO4, (B) 
sillimanite, Al2SiO5, (C) cordierite, Mg2Al4Si5O18, 
(D) spinel, MgAl2O4, and (E) clinoenstatite, 
MgSiO3. Based on their compositions, these 5 
phases can be depicted in a ternary composition 
plot (Figure 2). Although these particular five 
phases have no 

significant solid solution in this ternary system, 
even if we used phases that could vary in 
composition, there would still be a unique set of 
compositions for each phase where they coexist at 
the invariant point. The geometrical arrangement 
of these coexisting compositions is called the 
chemography of the invariant point, and the figure 
generated by connecting them with straight lines is 
called a chemograph. Each line drawn between 
phases implies that they are in equilibrium with 
each other. At the invariant point, equilibrium 
between phase A and phases B, C, D, and E is 
represented by 4 such lines; this is repeated for all 
other phases to generate a fully connected 
chemograph which shows that invariance does 
involve all phases coexisting at equilibrium with 
one another. 

In a non-degenerate ternary system of 5 
phases, the compositions of the phases at the 
invariant point are chemographically related to one 
another in 3 possible arrangements: pentagonal 
with all interior angles less than 180° (Figure 3a), 

quadrilateral as defined by four phases with the 
remaining phase being an interior point not falling 
on the diagonals (Figure 3b), and triangular as 
defined by three phases with the remaining two 
phases being interior points which are neither 
collinear with any of the points of the triangle nor 
coincident with each other (Figure 3c). The 

conditions where three or more phases plot along 
a line or where two or more phases plot at a 
common point are called degeneracies and they 
will be examined later in another review paper. 

In the MgO-Al2O3-SiO2 ternary system, the 
compositions of the five phases defined above at 
the invariant point define a distorted but 
nevertheless convex pentagon (Figure 2). Figure 
4a shows the chemographs which represent one 
of the five univariant reactions, A+B=C+D (phase 

E not participating). On the chemograph for the AB 
side of the reaction where phases A and B are in 
equilibrium with each other, a total of 3 divariant 
assemblages can be seen. That is, of the ten 
possible triangles that can be made up from all the 
straight lines drawn in Figure 2 for the invariant 
assemblage, only three remain stable in this 
region of the (P,T) space. The divariant 
assemblage (B,D) is indicated by a triangle 
showing coexistence between phases A, C, and E 
at equilibrium; the divariant assemblage (D,E) is 
indicated by the coexistence of phases A, B, and 



5    Journal of Young Investigators      May 2009 

 

Figure 4b 

 

Figure 4c 

 

Figure 4d 

 

Figure 4e 

 

C at equilibrium; the divariant assemblage (C,E) is 
indicated by the coexistence of phases A, B, and 

D at equilibrium. As the reaction proceeds from 
equilibrium between phase A and B to equilibrium 
between C and D, there exists a set of pressures 
and temperatures that forms the univariant line [E], 
whereby all four phases A, B, C, and D exist in 
equilibrium. On the other hand, on the opposite 
(CD) side of the reaction, equilibrium between 
phases A and B is replaced by equilibrium 
between C and D. Here the chemograph shows 
triangles for the stable divariant assemblages 
(B,D), (B,E) and (A,E). This kind of reaction is 
termed a “tie-line flip” since the line representing 
equilibrium between A and B, one of the diagonals 

of the ABCD quadrilateral, has literally been 
flipped to the other diagonal, representing 
equilibrium between C and D. We may also refer 
to this kind of univariant reaction as a “non-
terminal” reaction, since all four of the participating 
phases retain a stability field on both sides of the 
reaction (only the pairs of coexisting phases 
change). The other 4 univariant reactions, 
B+E=C+D (phase A not participating), A+C=D+E 
(phase B), A+B=D+E (phase C), and A+C=B+E 
(phase D) for the MgO-Al2O3-SiO2 ternary system 
are shown in Figures 4b, 4c, 4d, and 4e 
respectively. We note that, for the chemography of 
the selected phases, all five univariant reactions 
are non-terminal, tie-line flip reactions. This is 
evident in that each subset of four phases forms a 
quadrilateral whose diagonals can flip across the 
univariant reaction. This is a necessary 

consequence of the five phases forming a convex 

pentagon – removing any point from a pentagon 
leaves a quadrilateral. 

We may furthermore note that the 
chemograph of stable three-phase triangles shown 
at right on Figure 4a is identical to that shown at 
left on Figure 4c. Likewise, the chemograph on the 
right of Figure 4c matches that on the right of 
Figure 4b. The left of Figure 4b matches the right 
of Figure 4d. The left of Figure 4d matches the 
right of Figure 4e. And the left of Figure 4e 
matches the left of Figure 4a. This hints at the 
arrangement of 

these reactions where they meet at an invariant 
point. We can travel around the circle, changing 
stable triangles each time we cross one of these 
reactions, and arrive back at the original 
configuration. Depending which way we go around 
the circle, then, we can encounter the stable 
reactions in the order [B], [A], [C], [D], [E] or in the 
order [E], [D], [C], [A], [B]. No other sequence is 
legal. 
 
Schreinemakers Rules 
In the words of Schreinemakers (F.A.H. 
Schreinemakers, 1915): when two divariant 
assemblages, each of n phases, meet along a 
univariant curve of n+1 phases, then on one side 
of the univariant curve the divariant assemblage I 
is relatively less metastable than assemblage II, 
whereas on the other side of the curve, 
assemblage II is relatively less metastable than 
assemblage I. This statement is referred to as the 
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“fundamental axiom” (E-An Zen, 1966), and holds 
true as long as the univariant curves under 
discussion arise from the intersection of Gibbs 
free-energy surfaces. It is a topological statement 
about the properties of continuous surfaces in 
three-dimensional space. That is, if an 
assemblage is divariant then its Gibbs energy can 
be expressed as a function of two variables, P and 
T. By the phase rule, fixing these two variables is 
sufficient to determine all other properties, such as 
phase compositions, and especially the value of 
G. So divariant assemblages are represented by 
well-defined surfaces in G(P,T) space. The 
fundamental axiom simply states that where two 
such surfaces intersect (that is, have equal value 
of G) along some curve in (P,T), that one surface 
is higher than the other (“less metastable”) on one 
side of the line and the other surface is higher on 
the opposite side of the line. That is, two 
intersecting surfaces interchange their relative 
height. 

A univariant line represents the common 
equilibrium of some number of divariant 
assemblages (four, in the ternary case). 
Essentially, the fundamental axiom means that 
each of these divariant assemblages can only be 
stable on one side of the univariant line; it must be 
metastable on the other side. If the univariant is 
itself stable (that is, there is no other divariant 
assemblage, beyond those defining the univariant, 
with lower G), then each of its constituent divariant 
assemblages must indeed be stable on one side 
of the univariant line (and metastable on the 
other). If the univariant line is itself metastable 
relative to some other divariant assemblage, then 
all the divariant assemblages making up the 
univariant are metastable on both sides, but they 
still interchange their relative stability across the 
univariant line. 

Take, for example, the univariant reaction 
represented in Figure 4e. This reaction involves 
equilibrium among the four phases ABCE (phase 
D is absent) and so it can also be described as an 
equilibrium among the four divariant assemblages 
ABC, ABE, ACE, and BCE; these may also be 
labeled by the phases absent from each of these 
groups: (D, E), (C, D), (B, D) and (A, D). We find 
from the chemographic analysis above that two of 
these assemblages, ABC and ACE, can be stable 
on the left side of Figure 4e – that is, the triangles 
bounded by the three vertices corresponding to 
their phase compositions are plotted on the 
chemograph at left – but are absent from the 
chemograph on the right. On the other hand, the 
remaining two divariant assemblages (triangles), 

ABE and BCE, appear on the right side but are 
absent on the left. 

From the fundamental axiom, three further 
important conclusions can be drawn for an n-
component system of n+2 phases. 
 
Conclusion 1:  
On a P-T diagram, the stable divariant 
assemblage (M,N) is bounded by the univariant 
lines [M] and [N] and where these lines meet at an 
invariant point, the sector between them occupied 
by the stability region of (M,N) occupies no more 
than 180°. In addition, the stable portion of all n+2 
univariant lines about the invariant point forms n+2 
sectors, all less than or equal to 180°, occupied by 
one or more divariant assemblages, one of which 
is unique to the sector. This is known as the 180° 
rule. 
 
Conclusion 2:    
Any divariant assemblage whose stability sector 
extends across the univariant line [J] (stable or 
metastable) contains the phase J. The opposite of 
this statement is, however, not true. A divariant 
assemblage that contains phase J need not 
necessarily extend across the stable or metastable 
portions of univariant line [J]. This is known as the 
overlap rule. 
 
Conclusion 3: 
Consider a univariant line [J] that separates the P-
T space into two sides and represents a certain 
reaction A+B+C+…=M+N+O+… When any other 
univariant line involving all but one of these 
phases plus phase J crosses the first reaction, it 
must change from stable to metastable and the 
metastable end of the univariant lines [M], [N], 
[O]… must lie on the side of [J] representing 
phases M, N, O, … Likewise, of course, the 
metastable ends of the univariant lines [A], [B], [C], 
… must lie on the side of [J] where A+B+C+… is 
relatively more stable. We shall call this the half-
plane rule. The application of this rule for the 
arrangement of univariant lines is illustrated in 
Figure 5 for a ternary system containing five 
phases J, K, L, M, and N. For the univariant line [J] 
representing reaction K+L=M+N, the stable 
portions of univariant line [M] must lie on the KL 
side at positions such as 1, 2, and 3 (all of which 
are located within the sector marked by the black 
arrow) with their metastable portions lying at the 
MN side. The univariant line [N] is arranged in a 
similar way to that of univariant line [M], and all 
positions are allowed as long as the metastable 
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Figure 5: Application of Schreinemakers half-
plane rule determines that the metastable 
portions of univariant line [M] must lie on the MN 
side of univariant line [J]. 

 

Figure 6: An incomplete P-T diagram of the MgO-
Al2O3-SiO2 ternary system in which two 
univariant lines [C] and [E] are obtained 
experimentally. 

 

extension is on the side containing phase N (i.e. 
the MN side). Although at this stage the relative 
position of the [M] and [N] reactions has not been 
determined, this also follows from the half-plane 
rule once the reactants and products of these 
reactions are known, which is determined by the 
chemography. In short, knowing the chemography 
of the coexisting phases, successive application of 
the half-plane rule determines, schematically, the 
entire layout of the stable and metastable 
univariant reactions about the invariant point. 

This set of three conclusions from the 
fundamental axiom forms the very basis of 
Schreinemakers rules, which govern the steps 
involved in the mapping out of the approximate 
locations of all univariant lines as well as the 
relationships of all divariant assemblages on a P-T 
diagram. The following section completes the P-T 
diagram of the MgO-Al2O3-SiO2 ternary system by 
locating all other univariant lines according to the 
Schreinemakers rules discussed so far for a 
scenario when the locations of two univariant lines 
are determined through experiments. 
 
Construction of P-T Diagrams Based on 
Schreinemakers Rules  
 
Arrangement 1: Convex Pentagon  
Figure 6 is an incomplete P-T diagram of the 
MgO-Al2O3-SiO2 ternary system consisting of 5 
phases which are namely (A) forsterite, Mg2SiO4, 
(B) sillimanite, Al2SiO5, (C) cordierite, 
Mg2Al4Si5O18, (D) spinel, MgAl2O4, and (E) 
clinoenstatite, MgSiO3.  

Figure 6 shows two univariant lines [C] and [E], 
obtained from experiments. The univariant line [C] 
shown in the figure, for example, is a best-line fit 
from experimental data to the reaction forsterite + 
sillimanite = spinel + clinoenstatite (A+B = D+E). 
The compositions of these phases determine the 
stoichiometry of the reaction; that is, in order that 
this be a balanced chemical reaction we must 
have forsterite + sillimanite on one side and spinel 
+ clinoenstatite on the other (in fact, the balanced 
reaction is 2 forsterite + sillimanite = spinel + 3 
clinoenstatite, but for our purposes the numerical 
values of the stoichiometric coefficients do not 
matter; only their sign). Through observation of 
reaction progress direction in experiments taken 
from both sides of the univariant line [C], it is easy 
to determine the AB side and the DE side. The 
univariant line [E], on the other hand, represents 
the reaction forsterite + sillimanite = cordierite + 
spinel (A+B=C+D). When these two univariant 
lines are plotted in (P,T) space, we see that they 
appear to intersect, suggesting the existence of an 
invariant point. Furthermore, we can immediately 
check that our experimental data are valid by 
testing the form of this intersection against 
Schreinemakers rules (see Figure 6). Indeed the 
metastable part of reaction [C] lies on the CD side 
of reaction [E] and the metastable part of reaction 
[E] lies on the DE side of reaction [C], so the 
arrangement does satisfy the half-plane rule. Also, 
the phase pair A+B, and hence also the divariant 
assemblages ABC, ABD, and ABE, have their 
stability sector bounded in Region 2 on Figure 6, 
which occupies less than 180°, so the 

arrangement satisfies the 180° rule. These are the 
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Equation #5 

 

Figure 7: Determination of the location of 
univariant line [D] on the P-T diagram, and 
correct labeling of its AC and BE sides using the 
half plane rule.  

 

Figure 8: Fully mapped P-T diagram based on 
Schreinemakers rules. 

only checks we can make at this stage, but the 
arrangement appears legal. This is a good 
example of the application of Schreinemakers 
rules to verify that experimental data are 
topologically valid. 

Moreover, despite considerable efforts to 
obtain the locations of these two univariant lines, 
the locations of the other three univariant lines [A], 
[B] and [D] are still unknown. Many further 
experiments would be required to determine the 
locations of these remaining univariant curves; 
some of these experiments might need to extend 
beyond the P, T or time range where the 
experiments are considered practical in the 
laboratory. The application of Schreinemakers 
rules at this point will allow the construction of a 
fully mapped P-T diagram that provides important 
information on the arrangement of the remaining 
univariant lines.  

The five univariant reactions are as 
follows: (Equation 5) 

Applying conclusion 3, Schreinemakers half-plane 
rule, for the arrangement of univariant lines from 
the previous section, we can be certain that the 
metastable portion of the univariant line [D] is 
located within Region 1 which extends between 
the metastable portions of univariant lines [C] and 
[E] (Figure 6). This is because, from conclusion 3, 
the metastable end of univariant line [D] must lie 
on the DE side of univariant line [C] and also on 
the CD side of univariant line [E]; only Region 1, 
where these sides overlap, satisfies both 
constraints. Reaction [D] has been added in this 
manner to Figure 7. Now, the stoichiometry of 
reaction [D] is forsterite + cordierite = sillimanite + 
clinoenstatite (A+C =B+E). Once again, the half-
plane rule determines which side is which on the 
P-T plane. Based on the reactions already plotted, 
the A+C side must be the side where the 

metastable extension of [C] is located, and the 
B+E side must contain the metastable end of [E]; 
hence B+E is the upper-left side in Figure 7.   

Next, the location and reactant/product 
sides of the remaining two univariant lines [A] and 
[B] can easily be found by repeated application of 
the half-plane rule. The metastable portion of 
univariant line [A] must necessarily be found in a 
region representing an overlap of the phase A-
containing sides of all the univariant lines so far 
plotted. This is Region 4 (Figure 7), representing 

the overlap of the AC side of univariant line [D] 
and the AB side of univariant line [E] (for 
consistency, we also note that Region 4 is on the 
AB side of reaction [C]). Similarly, the metastable 
portion of univariant line [B] is located in Region 3 
where the AB side of univariant line [C] and BE 
side of univariant line [D] overlap. By drawing the 

remaining two univariant lines, and correctly 



9    Journal of Young Investigators      May 2009 

 

Figure 9a: Divariant assemblages (A, B), (A, C), 
(C, D), (D, E), and (B, E), all of which are unique 
to the five sectors formed by the univariant lines.  

 

Figure 9b: Sectors occupied by the remaining 
five divariant assemblages (A, D), (A, E), (B, C), 
(B, D), and (C, E). 

Figure 10: (Pentagonal Arrangement) Chemographs 
at each sector of the P-T diagram. 

labeling the sides BE and CD for univariant line [A] 
and the sides AC and DE for univariant line [B], 
the relative locations of all five univariant lines for 
the MgO-Al2O3-SiO2 ternary system is finally fully 
mapped out on the P-T diagram using 
Schreinemakers rules (Figure 8). It so happens in 
this case that we can add reactions [A] and [B] in 
either order; in general, however, it is wise to 
sequentially add the reactions one at a time. 

Yet, the elegance 

of the method of Schreinemakers does not stop 
here at the full construction of the P-T diagram; 
more information can be obtained through an 
analysis of the P-T diagram using conclusions 1 
and 2 of Schreinemakers (the 180° rule and the 
overlap rule). From Equation 3 and the 
chemography of the five phases in Figure 

2, there are a total of 10 divariant assemblages 
namely (A, B), (A, C), (C, D), (D, E), (B, E), (A, D), 
(A, E), (B, C), (B, D), and (C, E). According to the 
180° rule, the divariant assemblage (A, B) 
representing equilibrium between phases C, D and 
E, is represented by a sector spanning no more 
than 180° between univariant lines [A] and [B]. 
This is the direct result of the 180° rule and the 
fundamental axiom which dictates that the 
divariant assemblage of phases C, D and E is 
stable only up to but never crossing both 
univariant lines [A] and [B]. In addition, divariant 
assemblage (A, B) also belongs uniquely to one of 
the 5 sectors formed by the 5 univariant lines. 
Figure 9a shows the five unique sectors spanned 
by divariant assemblage (A, B) and the other four 
divariant assemblages (A, C), (C, D), (D, E), and 
(B, E). Conclusion 2, the overlap rule, is also 
observed here in our analysis. According to the 
overlap rule, divariant assemblage (A, B) contains 
phase D as one of its three equilibrium phases C, 
D, and E since the sector representing it extends 
across the metastable portion of univariant line 
[D]. The same can be observed for the remaining 
five divariant assemblages (A, D), (A, E), (B, C), 
(B, D), and (C, E) whose sectors are shown in 
Figure 9b. As another example, the sector for 
divariant assemblage (B, C) passes through the 
stable portions of univariant line [A] and the 
metastable portions of univariant lines [D] and [E]. 
Therefore, the stable divariant assemblage (B, C) 
must contain phases A, D and E.  

We can complete our visualization of the 

stable and metastable divariant assemblages 
everywhere around the invariant point by adding 
chemographs to each of the five sectors bounded 
by stable univariant reactions. On each of these 



10    Journal of Young Investigators      May 2009 

 

Figure 11: Fully-mapped P-T diagram for the 
quadrilateral arrangement of five phases. 

Figure 12: Fully-mapped P-T diagram for the 
triangular arrangement of five phases. 

Figure 13: Terminal univariant reaction, A+ B+C=D 
(phase E). 

chemographs we draw a triangle for each stable 
divariant assemblage found in Figure 9. The result 
of this is Figure 10. Thus, for example, in the 
sector at high temperature and low pressure 

(relative to the invariant point), there are three 
stable divariant assemblages (B, E), (A, E) and (B, 
D) since the sectors representing these stable 
assemblages extend across this sector of the P,T 
plot. This means that we expect that a rock 
equilibrated at such a (P,T) point will, depending 
on its bulk composition, contain either forsterite + 
cordierite + clinoenstatite, forsterite + cordierite + 
spinel, or cordierite + spinel + sillimanite. Under 
these (P,T) conditions, regardless of rock 
composition, we do not expect to find forsterite 

coexisting with sillimanite or clinoenstatite 
coexisting with spinel. Similar conclusions can be 
drawn for any region of (P,T) space by simply 
referring to the chemographs in Figure 10.  
 
Arrangements 2 & 3: Quadrilateral and 
Triangular 
We are now equipped with the necessary skills to 
analyze a ternary system whose chemography at 
the invariant point is govern by the quadrilateral or 

triangular arrangement of the five phases. As in 
the treatment of the pentagonal case, we rely first 
on knowledge of the location of a certain 
univariant line from experimental data before 
proceeding on with the application of the half-
plane rule for the construction of the remaining 
univariant lines on the P-T diagram. Using the 
180° rule and the overlap rule, we can next 
proceed to identify the sectors bounded by the 
divariant assemblages.  

Figures 11 and 12 show the fully-mapped 
P-T diagram of the quadrilateral case and the 
triangular case respectively; the construction of 
these is left as an exercise for the reader. Doing 
so requires an understanding of another form of 
univariant reaction, known as the terminal 
univariant reaction, in addition to the tie-line flip (or 
non-terminal univariant reaction) introduced 
earlier. Consider the univariant assemblage A, B, 
C and D (Figure 13) found in the chemograph of 
the triangular case in Figure 12 which represents 
the reaction A+B+C=D. This reaction is terminal 
since the stability field of phase D appears at the 
D side of the reaction and then disappears 

at the ABC side. The univariant reactions for the 
quadrilateral and triangular cases can now be 
readily written to determine the kind of reaction for 
each of the five univariant lines in both cases 
before one proceeds to apply the method of 
Schreinemakers in the construction of the P-T 
diagram. 
 
Conclusion  
The fundamental axiom by F.A.H Schreinemakers 
results from the topology of intersection of Gibbs 
free-energy surfaces along a univariant line; it 
leads to important conclusions such as the 180° 
rule, overlap rule and half-plane rule all of which 
are collectively known as Schreinemakers rules. In 
this review, we have demonstrated the 
effectiveness of Schreinemakers rules in the 
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determination of the arrangement of univariant 
reactions about the invariant point and the 
construction of a fully mapped P-T diagram using 
one or more univariant lines obtained from 
experimental data. Schreinemakers rules are also 
useful in the analysis of the sectors spanned by all 
divariant assemblages. This allows one to 
determine the divariant assemblages which are 
stable (or metastable) at a given pressure and 
temperature by simply referring to the constructed 
P-T diagram. Apart from the pentagonal, 
quadrilateral, and triangular cases illustrated for a 
ternary non-degenerate system of five phases, 
Schreinemakers rules apply equally well and can 
yield insightful results for system containing 
degeneracies and any number of components, as 
is characteristic of real mineralogical systems. 
Even if the chemography exists in a space of too 
many dimensions to be drawn, linear algebra or 
trial and error allows one to determine the 
stoichiometry of the univariant reactions in a 
system of any number of components, and then 
knowing on which side of each reaction the 
phases appear, Schreinemakers rules can be 
applied just as we have demonstrated in the 
ternary system. 
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