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of cell (hereafter B cell). The A cells are cancer stem cells. The B 
cells are terminal, which means they do not divide. This asymmet-
rical division results in the number of A cells staying constant and 
the number of B cells growing linearly. In this case, A cells are the 
cells that are cancerous because they are responsible for producing 
the unlimited growth of B cells, and the B cells are not necessarily 
cancerous because they do not produce growth. This results in a 
tumor that consists of mostly B cells but is sustained by the A cells.
These linear networks are not limited to only two cell types. There 
can be many different types of cell that divide and differentiate into 
other types of cells, but for the simplicity of the models, the only 
network considered was the linear network consisting of cells of 
type A and type B.
Cancer Stem Cells
Werner suggested that the A cell is a cancer stem cell. Normal 
stem cells are unique cells in that they have the ability to undergo 
self-renewal, where they create more of themselves, and they can 
also differentiate, where they turn into other types of cells after 
cell division. They are unspecialized cells that are responsible for 
maintaining the equilibrium number of cells of different types in 
the human body, replacing normal cells lost from injury or apopto-
sis, scheduled cell death. They do this by differentiating from their 
unspecialized forms to more specific types of normal cells found 
throughout the body. They are often tissue specific, meaning they 
differentiate into different types of cells that contribute to one type 
of tissue (Li & Xie, 2005).

Normal cells undergo apoptosis after they have been dividing 
for long periods of time. The more a cell divides, the more likely 
it is to lose parts of its DNA or create defective cells. Normal cells 
cannot proliferate forever. Stem cells, however, can. Stem cells 
have larger amounts of a specific enzyme that prevents their DNA 
from being damaged during cell division. For this reason, stem 
cells are able to live and divide indefinitely (Soltysova, Altanero-
va, Altaner, 2005). If stem cells become damaged and die, some of 

INTRODUCTION
Cancer is typically thought to be the result of one or more muta-
tions in a cell’s genes that cause uncontrolled cell division (Evan 
& Vousden, 2001). Werner (2011) proposed a new way to explain 
the growth and development of cancer. Rather than focusing on 
genetic mutations, he suggested that cancer is caused by specific 
mutations in developmental control networks, which are like in-
structions for growth and development that are carried out by the 
cells. Not all networks are cancerous. Developmental networks 
describe how normal, noncancerous cells divide and differentiate. 
Developmental networks can be activated by signals from inside 
the cell, from other cells, and from the cell’s environment. These 
cues are how normal cells are prompted to divide or differentiate. 
Specific mutations change the way a cell is told to divide and dif-
ferentiate and cause the network and cell to become cancerous. 
Rather than random, uncontrolled growth, Werner described can-
cer as a highly regulated process in which the new instructions tell 
the cell to grow abnormally.
Linear Cancer Networks
Werner (2011) presented various types of developmental control 
networks that, if mutated, can direct a cell to produce cancer. Our 
research focused on linear cancer networks. A linear cancer net-
work is a type of network where the number of cells grows linearly 
with respect to time. They are described as having a slower growth 
rate than other cancerous network types. 

Linear cancer networks begin with one type of cancerous cell 
(hereafter A cell). When A cells divide into two cells, they produce 
another A cell and an A cell that differentiates into another type 
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therapy over the next 10 to 20 years.
The goal of this research was to mathematically model a linear 

cancer network as described by Werner (2011). Once the model of 
this network was established, the effects of radiation treatment and 
how it interacted with the network was explored, and mathemati-
cal models that show the effects of treatment on cancer stem cells, 
tumor cells, and healthy cells were created.

PREVIOUS MODELS
There are many mathematical models of radiation treatment for 
cancer, including Sachs et al. (2001), Dingli and Michor (2006), 
Belostotski and Freedman (2005), Freedman and Belostotski 
(2009), and Freedman and Pinho (2009).

Sachs, Hlatky, and Hahnfeldt (2001) presented a linear-qua-
dratic model of radiation therapy that focused on how the cell is 
damaged. Logistic growth was used with the rationale that tumor 
growth slows over time as the tumor becomes larger. Tumors 
rarely produce exponential growth. They grow rapidly in their 
initial stages but slow over time (Skehan, 1986), which supports 
the assumption of logistic growth.

In the work by Dingli and Michor (2006), a model was pro-
posed that includes cancer stem cells. They described normal 
healthy cells, healthy stem cells, normal cancerous cells, and can-
cerous stem cells, and they modeled several forms of treatment. 
However, radiation therapy was not included in their models. It 
was concluded that one of the most important factors in treating 
cancer is destroying the cancer stem cells. If these cancer stem 
cells remain in the body, the tumor can grow back rapidly.In two 
works, Freedman and Belostotski (Belostotski & Freedman, 2005; 
Freedman & Belostotski, 2009) developed a model for radiation 
treatment using a system of two differential equations, where one 
considered healthy cells and the other accounted for cancerous 
cells. They assumed each cell population grows logistically and 
cancer cells and healthy cells each inhibit the growth of the other. 
They used four different methods of describing how the radiation 
dose was administered – as a constant, proportional to the number 
of cancer cells, proportional to the ratio of cancer cells to healthy 
cells, and periodically.     

The model proposed in this paper expanded upon these pre-
vious models by incorporating the idea of cancer stem cells and 
cancerous developmental control networks. It drew support from 
these models in its depiction of radiation and cell division.

MODELS 
Basic Linear Cancer Network Model
For a linear cancer network, Werner (2011) described a system 
where the population of A cells stayed constant and the popula-
tion of B cells increased at a rate proportional to the number of A 
cells. B cells were terminal, so they did not divide, and they were 
produced indefinitely. Also, all the cancer cells lived forever. This 
can be modeled by the system of differential equations,

the other stem cells will stop differentiating and will produce more 
stem cells to replace those lost to return to the appropriate number 
of cells (Li & Xie, 2005). 

It has been hypothesized that a cancer stem cell may be the 
result of either a mutated stem cell or a mutated normal cell that 
causes it to reproduce abnormally. There is a growing amount of 
evidence that supports the existence of cancer stem cells in several 
types of cancer, including Dingli and Michor (2006) and Milas 
and Hittelman (2009). Cancer stem cells can differentiate into oth-
er cells, just like noncancerous stem cells (Soltysova, Altanerova, 
Altaner, 2005). This agrees with Werner’s assertion (2011) that 
the A cells are cancerous stem cells. They differentiate into non-
cancerous B tumor cells that make up the majority of the tumor. 
However, in Werner’s description of a linear cancer network, he 
did not allow for the possibility that cancer stem cells may divide 
without differentiating, meaning they may increase the population 
of A cells.
Cancer Treatments
Radiation therapy is a form of cancer treatment that delivers pho-
tons to a tumor, and the photons release energy to break apart a 
cell’s DNA. Once its DNA is damaged, the cell can no longer re-
produce and will eventually die (Sachs, Hlatky, Hahnfeldt, 2001). 
A downside to radiation therapy is that it penetrates all the way 
through the body and deposits radiation in all of the cells it passes. 
This means the beam harms healthy tissues, even past the tumor. 
Photons can travel through the tumor and continue destroying tis-
sue (Suit, 2003). But, the strength of the beam decreases expo-
nentially as it travels. Radiation works best for tumors near the 
surface of the body where it still has the most energy, and deeper 
tumors are problematic to treat (Castellucci, 1998). Although it is 
an effective method to treat cancer, radiation therapy has many 
drawbacks.

Proton therapy is similar to traditional radiation therapy in 
how it destroys the cell. It is a form of radiation that shoots a beam 
of protons at the tumor, rather than photons like in traditional radi-
ation therapy (Castellucci, 1998). Proton therapy has been shown 
to be more effective than other forms of radiation. In a study by 
Mu et al. (2005), the mean dose of radiation absorbed by sur-
rounding organs was about 0.0 Gy, which was significantly lower 
than other forms of radiation treatment. Proton therapy delivers a 
larger dose of radiation to the tumor and harms the surrounding 
healthy organs and tissues less than photon radiation that uses X-
rays. The greatest dosage is delivered at the end of the beam (Chen 
et al., 2012). Since protons have mass, they only travel a specific 
distance into the body and do not travel all the way through. The 
depth of the beam may be controlled by how much energy the 
protons start with, and that can be easily calculated and controlled. 
The maximum dosage of radiation can be administered to the tu-
mor itself, rather than wasted on the surface of the skin (Castel-
lucci, 1998). Proton therapy is more effective in killing cancer 
cells than traditional photon therapy because it can deliver more 
radiation to the tumor itself and less to the nearby healthy cells. 
Suit (2003) predicted proton therapy would largely replace photon 
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k1 only described the division rate of A cells, which was also the 
birth rate of B cells. Therefore, it was important to include the -dB 
term in the equation for B cells to account for their natural death 
over time. Many types of cancer cells cease to undergo apoptosis, 
but there are other proposed mechanisms by which the cells can 
die (Brown & Attardi, 2005). Some oncogenes actually promote 
cell death (Lowe & Lin, 2000). Other causes for cancer cell death 
include natural immune responses to the cancer (Usman, Jackson, 
Cunningham, 2009). However, these occurrences would be rela-
tively slow, so d was assumed to be a very small number.

To depict the growth of a tumor from its initiation, the initial 
conditions, which were denoted by A(0)= A0, B(0)= B0, and H(0)= 
H0, described the tumor at the point immediately after the first A 
cell was created. This meant initial conditions A0=1, B0=0, and 
H0=M2.
Radiation Treatment Model
The goal of this research was to describe the effect of radiation 
therapy on these cancer networks with a mathematical model. 
The model proposed here considered only radiation delivery as 
a constant in its differential equations, as proposed in the work 
of Freedman and Belostotski (2009) and Freedman and Pinho 
(2009). The model is as follows:

where
	 A	 represents the number of A cancer stem cells,
	 B	 represents the numbers of B tumor cells, and
	 k1	 is the rate that A stem cells are dividing.
Refined Linear Cancer Network Model
The previous system of Eq. 1-2 was slightly changed to make it 
more realistic. The new assumption was made that all cells grow 
logistically. Works by Skehan (1986) and Laird (1964) supported 
this assumption, as a tumor’s growth rate was shown to slow as 
it grows larger, and it was in accordance with many other mod-
els of cancer growth, such as Sachs et al. (2001), Belostotski and 
Freedman (2005), Freedman and Belostotski (2009), Freedman 
and Pinho (2009), and Dingli et al. (2006). Also included were 
healthy cells (H). These were only the healthy cells adjacent to 
the tumor that were close enough to be vulnerable to radiation. 
Although healthy cells are not part of a linear cancer network, 
they were included because the effect of radiation on these cells is 
important to monitor. It was assumed that they do not interact with 
the cancerous cells and vice versa for the simplicity of an analysis.

Our refined model is as follows:

where
A	 represents the number of A cancer stem cells,
B	 represents the numbers of B tumor cells,
H	 represents the number of healthy cells vulnerable to radiation,
k1	 is the rate that A stem cells are dividing,
k2	 is the rate that H cells are growing,
S	 is the desired number of A stem cells in the tumor,
AS	 is the fraction of A cell divisions producing B cells,
M1,2	 are the carrying capacities of B and H, respectively, and
d	 is the death rate of B cells.

Werner (2011) suggested that cancer starts off as one mutated 
cell, which is the first A cell, and that the A cell always divides 
asymmetrically, producing one A cell and one B cell, exemplified 
in the system of Eq. 1-2. It was then assumed in our model that 
the first A cell produced more A cells before differentiating into 
B cells, similar to how normal stem cells behave (Soltysova, Al-
tanerova, Altaner, 2005). In the system of Eq. 3-5, A cells grew 
to a specific number by dividing to produce two daughter A cells 
rather than one A cell and one B cell until they reached the desired 
number (S). The fraction  in the  equation represents the frac-
tion of A cell divisions that differentiate into B cells. If A<S, some 
A cells produce more A cells and some produce B cells. If A=S, 
all of the A cells produce B cells. It was assumed that A will never 
exceed S because A cells will not produce more A cells if they are 
at their capacity.

A death rate was incorporated in Eq. 4. While k2, the growth 
rate of H, accounted for the birth rate and death rate of H cells, 

where r1,2,3 are the respective effects of radiation.
It is important to note the initial conditions of the treatment models 
may not start at A0=1, B0=0, and H0=M2. Starting at these initial 
conditions would imply that a cancer cell is being treated imme-
diately after it is formed, which is unreasonable. The cancer must 
grow large enough to be noticed before treatment may begin. It is 
more reasonable for treatment to begin when the populations are 
beginning to reach their carrying capacities. The simulations start 
with each cell population at carrying capacity.
Dimensionless Form
The model was nondimensionalized to reduce the number of pa-
rameters and simplify the calculation of equilibrium points. The 
dimensionless model is shown below.

where
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Stability
Upon substituting each equilibrium point into the Jacobian ma-
trix in Mathematica 8, the positive eigenvalues produced from E1, 
E2, and E3 revealed that these equilibrium points were always un-
stable. E4 was the only stable equilibrium point, as eigenvalues of 
this equilibrium point substituted into the Jacobian matrix are all 
negative. This stable equilibrium point was then further examined.

NUMERICAL SIMULATIONS
Low Radiation Effect on Nondividing Cells
All cell types will reach an equilibrium at the stable equilibrium 
point, E4, when the inequalities  ≤1/4,  ≤β/4, and  <α(x+)2 
are satisfied. It was assumed that  <α(x+)2 because radiation af-
fects cells that are nondividing less than cells that are quickly di-
viding (Santini, Rainaldi, Indovina, 2000). However, it is interest-
ing to consider the behavior of the system when one or both of the 
inequalities  ≤1/4 and  ≤β/4 are violated.
   Consider  in x+ and y+, and  and in z+. 
If  >1/4, then x+, y+ R. Likewise, if  >β/4, then z+ R. To 
investigate the effect these inequalities have on the behavior of the 
model, four cases were developed (Figure 1):
Case 1: x+,y+,z+ R
Case 2: x+,y+ R and z+ R
Case 3: z+ R and x+,y+ R
Case 4: x+,y+,z+ R
The dimensionless parameters were used to find numerical values 
for the original parameters that fit each case (Table 1). They were 
chosen arbitrarily, simply to describe each case. More realistic 
numbers may be acquired through biological study.

The rate of division of A cells was arbitrarily chosen. For Cas-
es 1 and 3, the growth rate of the healthy cells was chosen to be 
similar to the division rate of the cancerous cells. This was because 
studies have shown that individual cancer cells usually do not ap-
pear to divide more quickly than healthy cells (Santini, Rainaldi, 
Indovina, 2000). This meant that B cells and H cells were likely 

It is important to note that the dimensionless system produces 
the same behavior as the original treatment system (Eq. 6-8). Also, 
the parameters are all still positive. For more about nondimen-
sionalization, see A First Course in Mathematical Modeling (Gior-
dano, Fox, Horton, 2013). 

ANALYSIS
Equilibrium Points
Equilibrium points were calculated by setting the growth rate 
equations in the dimensionless form (Eq. 9-11) equal to zero and 
solving in Mathematica 8. The equilibria helped in predicting the 
long-term behavior of the model. This produced four equilibrium 
points En of the form:

E1=(x-,y-,z-)
E2=(x-,y-,z+)
E3=(x+,y+,z-)
E4=(x+,y+,z+)
where

Positivity of Equilibria
It is interesting to establish conditions for the parameters of the 
model that determine whether the equilibrium points are positive 
or negative. This model did not include an equilibrium point where 
any of the populations are zero, which is typically thought of as a 
population dying. Whenever a population approaches a negative 
equilibrium value, it will die in a finite amount of time. When such 
a population reached zero, it was understood that it would not de-
crease further.

 Let R+={x R :x>0 }. If it was assumed that  ≤1/4  and 
≤β/4, it was clear that x±, z± R+. Note that A cell and healthy cell 
(x and z) populations were positive only if they are real-valued. 
However, the positivity of y± was less clear than the other two 
populations. 

The denominator of y± was clearly positive, but the numerator 
may not be. To eventually kill all the B cells, the numerator must 
be negative, so it must be true that  >α(x±)2. That meant for E1 
and E2, it must be true that  >α(x-)2, and for E3 and E4, it must be 
true that  >α(x+)2 for the B cell population to die out in the long 
term. The effects of this inequality will be further examined at a 
later point in this paper.
Jacobian Matrix
To analyze the stability of each equilibrium point, the Jacobian 
matrix of the model was calculated by taking the partial deriva-
tives of the system of Eq. 9-11 in Mathematica 8.

1-2x 
2αx - 2αxy

0

0
- αx2 - δ                 

0

   0	
   0	    
β-2βz	[ [J1 = 

Figure 1. A plot of  vs.  that describes the characteristics of 
each of the four cases when it is assumed that  ≤α(x-)2.
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B cells are terminal, therefore the radiation was assumed to affect 
them very little. r3 was also small with respect to the number of 
H cells, but it was larger than r2 because many H cells do divide, 
but not all. However, r3 was not as large as r1 because healthy cells 
are better able to repair the damage from radiation than cancer-
ous cells, as many cancer cells lack damage control checkpoints 
that normal cells have (Bao et al. 2006), so the radiation does not 
kill the healthy cells as frequently as it kills cancerous cells. This 
meant the fraction of healthy cells killed was smaller than the frac-
tion of A cells killed.

Each case was graphed in Mathematica 8 using the appro-
priate parameters shown in Table 1 to visualize the behavior the 
various real or nonreal elements of the equilibrium points created 
(Figures 2-5).

These graphs revealed that an equilibrium containing a nonre-
al number resulted in the population reaching a negative number, 
though it was understood that the population would remain zero 
when it is reached. The number of B cells in Case 3 (Figure 4) and 
both B cells and healthy cells in Case 4 (Figure 5) would continue 
to decline until they reach zero. However, the number of A cells 
reached zero first, and the graphs cannot continue when the A cell 
population becomes negative because the negative population val-
ues produced unrealistic behavior.
High Radiation Effect on Nondividing Cells
Each case’s behavior can vary further. Above, it was assumed that 

 <α(x+)2. This meant that the radiation had very little effect on 
the B cells, since the B cells are terminal (Santini, Rainaldi, Indo-
vina, 2000). While this could still be true for some types of cancer, 
investigating the effects of  >α(x+)2 produced more interesting 
and biologically relevant behavior. This meant assuming radiation 
has a slightly larger effect on the B cells than before, which was 
highly plausible.

The following graphs (Figures 6-9) for each of the cases with 
large  (  >α(x+)2) were developed in Mathematica 8. The only 
difference between the parameters used for these graphs and the 
previous (Figures 2-5) was that  was increased, as shown in 
Table 2. Figures 6-9 were generated by plotting Eq. 6-8 with the 
initial populations, each at their equilibrium. When the population 
of B cells reached zero, the simulation was stopped and Eq. 7 was 
replaced with  = 0, to keep the B cell population from continu-
ing into negative values. Then, the graph was allowed to continue 
until the next population reached zero or a nonzero equilibrium. 
Each revisited case resembled the previous graphs of each original 
case (Figures 2-5), except the B cells died out much more quickly. 
These graphs showed that it is possible for B cells to die out before 
A cells do.

Changing ρ2 did not affect the previously discussed inequali-
ties  ≤1/4  and   ≤β/4. Changing  merely affected the rate at 
which B cells died off. Although increasing  even slightly had a 
dramatic effect on the behavior of the B cell population, there was 
no effect on the overall survival of the entire tumor. The difference 
was that A cells could then outlive the B cells, and if the A cells 
were not killed, they would repopulate the B cells and the tumor 

produced at the same rate, so the death rate of B cells was chosen 
to bring the overall growth rate closer to the overall growth rate of 
H cells. For Cases 2 and 4, the value of k2 was chosen simply to 
display the desired behavior of each case.

In our simulations, all populations started at their carrying ca-
pacity, but note that B≠M1. This occurred because k1, which is the 
rate that A cells are dividing and B cells are being produced, does 
not account for the death rate of B like a typical logistic growth 
rate would because it is merely the rate of A cell division. On the 
other hand, k2 accounts for the birth rate and death rate of H cells, 
so H=M2. In our simulations, the initial population of B cells start-
ed at its true carrying capacity, which is a combination of M1 and 
d that can be uncovered by graphing Eq. 4 and approximating the 
number it approaches.

The carrying capacities were chosen so that the A cell popula-
tion was much smaller than both the B and H cell populations, to 
support the assumption that the growth of the tumor is maintained 
by only a small number of A cells.
   The radiation constants represented the number of cells killed 
per time step. r1 was largest because cells that are actively dividing 
are more easily harmed than cells that are not (Santini, Rainaldi, 
Indovina, 2000), and all A cells are dividing. r2 was very small, 
especially in relation to the large number of B cells, because the 

Table 1. Numerical values of parameters for each case.

Table 2. Values of r2 in Figures 6-9.
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The number of cells in each population on an arbitrary scale. 
Figure 2. Case 1 is shown in this plot, where all equilibria are real numbers.  <1/4,  <β/4 Figure 3. Case 2 is shown in this plot, 
where x and y are real, z is nonreal.  <1/4,  >β/4 Figure 4. Case 3 is shown in this plot, where x and y are nonreal, z is real.  
>1/4,  <β/4 Figure 5. Case 4 is shown in this plot, where aAll equilibria are nonreal numbers.  >1/4,  >β/4 Figure 6. Case 1 re-
visited is shown in this plot, where all equilibria are real numbers. <1/4,  <β/4, and  >α(x-)2 Figure 7. Case 2 revisited is shown 
in this plot, where  x and y are real, z is nonreal.  <1/4,  > β/4, and  >α(x-)2 Figure 8. Case 3 revisited is shown in this plot, 
where x and y are nonreal, z is real.  >1/4,  <β/4, and  >α(x-)2 Figure 9. The number of cells in each population on an arbitrary 
scale. Case 4 revisited is shown in this plot, where all equilibria are nonreal numbers.  >1/4,  >β/4, and  >α(x-)2
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meaningful form resulted in the following Case 3 inequalities:would grow back, which describes recurrence.

DISCUSSION
Implications
The model predicted many possible outcomes of radiation treat-
ment, including a cure, failed treatment, and cancer recurrence. 
The dimensionless parameter values for  and  that correspond 
to the outcome of each treatment is shown in Figure 10.

Three important outcomes of treatment explained by the 
model – tumor survival, tumor death, and recurrence – are sum-
marized in Figure 10. Too small of a value of  resulted in the 
tumor surviving. This was exemplified in Case 1 (Figures 2 and 6) 
and Case 2 (Figures 3 and 7). In Case 2, realistically, the radiation 
would be stopped before the healthy cell population reached zero 
because the patient would be unable to physically withstand any 
more treatment. Biologically, in Case 1 and 2, the dose of radia-
tion delivered to the A cells was not great enough. The radiation 
decreased the population of A cells but did not kill them all. Also, 
the effect of radiation on the B cells, , was not great enough to 
reduce the B cell population to zero. Radiation in this range mere-
ly shrunk the tumor, or lowered all populations’ equilibria without 
decreasing them to zero. If radiation were stopped, the remaining 
A cells would regenerate and the tumor would grow back to its 
pre-treatment size or larger.

Another possible outcome of the treatment the model can 
predict is recurrence. This is when there is not enough radiation 
delivered to the A cells, allowing them to survive, but the B cells 
receive enough radiation and are killed. This was shown in revis-
ited Cases 1-4 (Figures 6-9), where the B cells died out before the 
A cells. Since there was such a massive number of B cells relative 
to the number of A cells in the tumor prior to treatment, if all of the 
B cells were killed by the treatment, the tumor would be too small 
to identify. This may be misidentified as a cure state, and radiation 
would be discontinued. The remaining A cells could regrow the 
tumor, and the cancer would return, as the model suggested. Even 
in revisited Cases 3 and 4 (Figures 8 and 9), where the A cells 
would eventually be killed, radiation may likely be halted before 
the A cells have time to die off because the B cells, the visible bulk 
of the tumor, will die first. The course of recurrence is exemplified 
in Figure 11, where treatment is ceased at time 30. The remaining 
cancer stem cells were able to quickly regenerate the tumor. Sup-
porting this idea of recurrence, Werner (2011) stated that the goal 
of treatment is to remove all the cells that are actually dividing. 
It is important to kill the A cells, since they are the driving force 
behind the tumor and responsible for its growth and survival.

To prevent the previous two outcomes, radiation must be de-
livered so that the previously discussed inequality  >1/4 is true, 
demonstrated by original Case 3 and Case 4 (Figures 4 and 5) and 
revisited Case 3 and Case 4 (Figures 8 and 9), as long as radia-
tion is continued for an adequate amount of time to kill the A and 
B cells. The ideal case was Case 3, where the tumor cells were 
killed by the radiation but the healthy cells survived. Converting 
the dimensionless inequalities back to the original, biologically 

Figure 10. A graph of  vs.  describing the result of treatment 
based upon the numerical values of the parameters. Figure 11. A 
plot of the number of cells in each population over time depict-
ing the course of recurrence. After all of the B cells are killed, the 
tumor is too small to detect, and treatment is stopped at time 30. 
The A cells are able to quickly regrow the tumor.

The first inequality ( >1/4) suggests that in order to kill the can-
cer, the dose of radiation must exceed one-fourth of the growth 
rate times the carrying capacity of A cells. This makes sense bio-
logically because increasing the size of the tumor (increasing S) or 
increasing the rate at which the tumor is growing (increasing k1) 
will require a larger amount of radiation. The maximum number of 
A cells and the rate at which they are dividing are what determine 
the size and growth of the tumor. A large S means that there are 
many A cells to produce B cells and that the tumor will grow faster 
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and larger. Similarly, a large k1 indicates that A cells can produce 
B cells and reproduce other A cells very rapidly. The dose of radia-
tion (r1) must be large enough to combat those factors to result in 
the cure state.

The second inequality ( ≤β/4) suggests that the dose of ra-
diation may not exceed one-fourth of the growth rate times the 
carrying capacity of healthy cells in order for the healthy cells to 
live. Increasing the total number of healthy cells (increasing M2, 
because the initial population of healthy cells will be at the carry-
ing capacity) or increasing the rate at which the cells can recover 
(increasing k2, the rate they divide and regenerate) will result in 
a population of healthy cells that can withstand and recover from 
larger amounts of radiation. This inequality being true protects the 
healthy cells from dying. However, a cure state can be reached 
even when the inequality  ≤β/4 is not true as long as  >1/4 is 
satisfied. This was exemplified by the original and revisited Case 
4 (Figures 5 and 9). If radiation can be stopped after the cancerous 
A cells are killed but before too many of the healthy cells are, then 
a successful cure state will be reached. 
Proton Therapy
Proton therapy does not greatly differ from typical radiation ther-
apy in terms of the mathematical model, but there are differences 
in the parameters that distinguish the two from each other. Since 
proton therapy is much more selective toward the tumor (Chen 
et al., 2012), the value of r3 would be significantly lower when 
modeling proton therapy than when modeling radiation therapy. 
The corresponding r1 and r2 could be much greater since a larger 
dose of radiation can be delivered to the tumor while affecting the 
healthy tissues less when treated with proton therapy (Suit, 2003).
The predicted benefits of proton therapy for the model are that the 
inequality  ≤β/4 will be violated less frequently and the popula-
tion of healthy cells will be less affected. Cases 2 and 4 (Figures 
3, 5, 7, 9), where the healthy cells are greatly damaged, could 
be avoided. This would result in more successful treatments that 
would not have to be stopped because too many of the patient’s 
healthy tissues were being harmed. The patient is predicted to un-
dergo less physical stress on his or her body with proton therapy. 
More realistic use of the model may show that it is difficult to kill 
the cancer stem cells without greatly harming the healthy cells 
with radiation. Proton therapy has been shown to greatly reduce 
the toxicity to healthy cells and may be much more effective at 
targeting cancer stem cells (Milas & Hittelman, 2006). Overall, 
proton therapy is much more effective than radiation therapy.
Strengths of the Model
A major strength of the model is that it uses the idea of cancer 
stem cells and developmental control networks. Few models have 
used the idea of cancer stem cells. One of the few mathemati-
cal models of cancer stem cells is Dingli and Michor (2006). But, 
our proposed model incorporated the idea of developmental con-
trol networks. Developmental control networks are a new idea on 
which very little research has been conducted, but they offer many 
explanations for the behavior of cancer (Werner, 2011). This is 
important because it allows the model to predict recurrence. Pro-

viding a mathematical explanation of this phenomenon is a great 
contribution from cancer control networks.

The treatment model (Eq. 6-8) and the related inequalities 
may also be used to predict the time required to kill all tumor cells 
and prevent tumor recurrence. This will be of great help to the 
medical field, because recurrence is a major problem for many 
types of tumors (Lin, 1999). Several measurements of a patient’s 
tumor progression over time may provide realistic, individualized 
parameters to be used in this model. Using realistic and accurate 
parameters, the time it takes to kill all of the tumor cells, including 
the cancerous stem cells, may be calculated, and radiation can be 
delivered to a patient accordingly. Also, if it is shown that the A 
cells die before the B cells, treatment may be stopped after killing 
all of the A cells, since the B cells will eventually die out. This 
could save a patient money and the stress of undergoing unneces-
sary radiation treatments.
Limitations of the Model
Although the model explained many new concepts, Werner pro-
posed many types of cancer networks, such as linear, exponential, 
geometric, stochastic, and more. There are even expansions of the 
basic linear cancer network, called linear mixed cell networks, 
where there are more than A and B cells (Werner, 2011). These 
other types of cancer networks may be better predictors of actual 
cancerous behavior than the most basic linear network.

The model became unrealistic once any population reached 
zero. Realistically, the treatment would cease to affect a popula-
tion of cells once that population reached zero. Instead, the model 
continued to subtract r1,2,3 from the negative cell populations. This 
behavior was not biologically meaningful.

Another factor limiting the model was how the radiation is 
administered. In reality, radiation is not a one-time occurrence. It is 
delivered periodically, with breaks between treatments to allow the 
patient to recover from the previous treatment. Unfortunately, the 
model did not take this into account. The model depicted radiation 
as a singular treatment that either killed or failed to kill the cancer 
over time. The model was still very effective, because it described 
an overall, average effect of radiation in the long term, but it would 
be more realistic for a model to describe a periodic administration 
of treatment.

Also, there are different characteristics of cancer that can be 
modeled. One is competition between the cancerous cells and the 
healthy cells, like in Sachs et al. (2001), Belostotski and Freedman 
(2005), Freedman and Belostotski (2009), and Freedman and Pin-
ho (2009), which can explain cancerous and healthy cells fighting 
for resources, healthy cells being negatively affected by byprod-
ucts of the cancerous cells, and more. The terms that model these 
interactions can get incredibly complicated and nonlinear. Unfor-
tunately, competition was ignored for the sake of the analysis.
Future Work
There is much to expand on with this basic model of cancer net-
works and cancer treatment. First, the proposed model was of the 
simplest type of cancer network – a linear cancer network. As 
mentioned above, there are a seemingly endless number of net-
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works that could all be modeled by differential equations. In the 
future, these could each be mathematically modeled.

As previously mentioned, the one-time administration of radi-
ation depicted by the model was not entirely realistic. Though still 
meaningful, the model could be made more realistic if radiation 
was delivered periodically, similar to the fourth control in the work 
of Freedman and Belostotski (2009). This would be an interesting 
direction to take this research in the future.
   However, Werner (2011) stated that radiation may not be the best 
way to treat a cancer that fits into the category of a linear cancer 
network because the radiation may mutate B cells into A cells in-
stead of killing them. This is a common fear of radiation therapy. 
Radiation has been shown to sometimes mutate healthy cells into 
cancerous cells and cause a secondary cancer (Hall 2006). The 
model did not account for this mutation into A cells, and develop-
ing a model that does may be of interest. Although proton therapy 
reduces the risk of mutating other cells into cancerous cells, inves-
tigating and modeling other treatments and how they affect healthy 
cells, cancer stem cells, and developmental control networks could 
be beneficial.

CONCLUSION
The model was an effective depiction of a linear cancer network 
and radiation treatment, and it provided a mathematical explana-
tion for recurrence, resulting from the incorporation of cancerous 
developmental control networks in the model. The model also 
can be used to predict the time and dose of radiation necessary to 
prevent negative results of treatment. This will be a great aid to 
medical professionals, but to properly utilize this model, realistic 
numerical values for the parameters must be found. Also, there is 
much more to investigate about these developmental control net-
works, like other types of networks, cells, cell interactions, and 
cancer treatments. Ideally, this research is a launching pad for fu-
ture study.
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