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Abstract 

Manipulation of learning processes in the brain has proven to be experimentally challenging. 
Various studies have focused on specific components of Long-Term Potentiation (LTP), attempting to 
systematically regulate the learning progress through manipulation of its proposed elements. The 
manipulation of such elements is thought to result in a proportional change in the efficacy of the 
whole system. Based on the inadequate results of this approach, we hypothesized that changes 
implemented to a fraction of synapses in a network represented an incomplete investigation of LTP 
function. We further hypothesized that in order to successfully manipulate learning output, whole 
systems must be manipulated whether working with a single synapse or a neural network. We chose 
a relatively simple and easily applied model, the perceptron, to simulate the effects of strengthening 
synaptic connections between neurons, as in learning. We expected that following the learning 
phase, systematic changes to a fraction of synaptic weights would jeopardize the perceptron’s ability 
to recall the learned patterns. Indeed, fractional changes of the weight distribution caused more errors 
in the retrieval of patterns. However, when the entire distribution was altered, error in pattern retrieval 
was absent.  
 
Introduction 

The connections between neurons have 
been shown to grow in strength (i.e. synaptic 
weight) in response to long trains of high 
frequency stimulation, or the temporal pairing of 
two or more stimulating signals (Kessels and 
Manilow, 2009; Bliss and Lømo, 1973). Such an 
input-dependant change in the properties of 
neuron communication is the definition of Long-
Term Potentiation (LTP), a leading theory of 
memory formation and recall in the brain. LTP 
involves many complex cellular steps, coordinated 
between the pre- and postsynaptic neurons in 
ways that are yet not fully understood. Following 
induction of LTP, synapses exhibiting the 
increased weight values characteristic of this type 
of learning tend to transmit signals more readily 
when stimulated. A higher firing probability is 
subsequently observed throughout the affected 
pathways (Blundon and Zakharenko, 2008; 
Smolen, 2007). The changes in pathway activity 
resulting from LTP represent the specific tuning of 
neural response to a familiar (or learned) stimulus.  

Studies have shown that neurons within 
the Medial Temporal Cortex of the mammalian 
brain are more responsive to familiar stimuli, 
showing either an increase or a decrease in their 
firing efficacy (Squire et al. 2009). Although this is 
good evidence for learning, it is not yet clear how 

this is manifested in memory retrieval. We can 
however speculate from this evidence that cells 
which have undergone increases in synaptic 
weight (as in learning) do develop recall ability, as 
a function of the increased synaptic strength.  

Various studies have attempted to access 
the effects of altering synaptic strength via genetic 
and pharmacological manipulations in an effort to 
change either the outcome of the learning 
process, or retrieval ability following learning 
(Shunsuke et al, 2009; Tao-Cheng et al, 2001; 
Eichenbaum, 1996). Although LTP is a 
multicomponent process, these studies have 
suggested the presence of key constituents in 
synaptic weight increase. Experimenters have 
labeled various cellular steps as rate limiting 
steps, and attempted to either up- or down-
regulate their activity to cause associated changes 
in memory systems both in vivo and in vitro. These 
studies have lead to very few conclusive results, 
suggesting that the underlying assumption, that 
singular key components exist within LTP 
systems, is inaccurate.  

The single-layer perceptron (Rosenblatt, 
1958) allows the basic modeling of a neural 
network, similar to those found in the Medial 
Temporal Cortex. It is a theoretical model capable 
of simulated learning of associations between 
independent patterns by adjusting the connections 
of its network in a way representative of LTP. The 
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network connections are collectively represented 
by a matrix of weight values, each value 
representing connection strength. The relative 
simplicity of this model in theory and application, 
together with its amenability to experimental 
manipulation, makes it a good platform from which 
to examine general trends in neuronal 
connectivity. Although it has been shown that the 
capabilities of feed-forward learning networks are 
limited (Minsky&Papert, 1969; Malinowski et al. 
1995), trends which can be systematically isolated 
in the perceptron are valuable measures of 
influence over basic learning (Elizondo et al. 
2007).  

Targeted manipulation of values in the 
weight matrix largely parallels previously 
mentioned biological experiments. Approaches in 
living systems have targeted synaptic weights 
through specific components of LTP, and in select 
cells within a network. Such manual increases in 
localized synaptic strength are presumably 
beneficial to the network, seeing as the overall 
efficiency of the system would be expected to 
increase. However, by altering a fraction of a 
network’s weight matrix by a constant factor, we 
expected to simulate the incomplete strengthening 
of a network and produce effects which mirror 
those observed in living systems. 

Using the perceptron program as a basis 
for supervised learning and subsequent retrieval of 
learned information, we hypothesized that 
experimental changes to the distribution of weight 
values after learning will cause associated 
changes in the state of the perceptron. We expect 
that these changes will reflect decreases in the 
efficiency of pattern retrieval. 
 
Materials and Methods 
 

In our configuration of the perceptron 
model (Figure 1.), input patterns are represented 
in groups of binomial values (0 and 1). Each input 
pattern is processed through the weight matrix 
during its transmission from an input node to an 
output node (nodes equivalent to pre and post-
synaptic neurons). By this process it receives a 
strength value, assumed to be defined by the 
pattern’s familiarity (and later, its ability to be 
recalled). A total of 20 input patterns were 
multiplied across the weight matrix connecting the 
input and output nodes. The initial weights 
assigned to the weight matrix were randomly 
selected from a uniform distribution between -0.5 
and +0.5. This random selection of values results 
in a Gaussian distribution of weights as suggested 
by the Central Limit Theorem. A fixed-threshold 

function was used to produce a binomial output 
from the range of values emerging from the weight 
matrix. The desired output of the perceptron is 
chosen by the experimenter and is independent of 
the input. The learning process takes place by 
comparing the input pattern to the desired pattern 
and developing the weight matrix according to the 
Delta rule formula so that the matrix may be 
tailored to link the input with the output. In this way 
the model is able to “learn” associations between 
independent stimuli solely by changing the 
strength of connections between its nodes 
(comparable to LTP-based learning). 

 

 
Figure 1. Schematic model representing the processing 
of 5 input patterns (in) arising from a series of 5 input 
nodes. The input patterns (composed of binary vectors) 
are compared to a predetermined “desired” output. 
Weight values (wn) are then applied to the inputs 
through algorithm in an effort to yield an output pattern 
similar to the desired output. The perceptron is able to 
learn patterns by adjusting these weights in order to 
render the desired and actual outputs identical. The 
memory of the input or stimulus is thereby stored in the 
array of updated weight values.  

 
The error rate observed in perceptron 

performance is defined as the percentage of 
incorrectly retrieved patterns over many 
successive trials. The update (ΔWj) required to 
resolve the error between the present and the 
desired states of the perceptron was computed, 
and gradually resolved using the Delta rule: 

 
( )XiYjUjWj −=Δ α  

 
The learning rate (α) was chosen as 0.1 in 
accordance with previous protocol (Rojas, 1996). 
The rule requires the distance between the 
desired output (Uj) and the present state (Yj) be 
multiplied by both α and the ith input (Xi). Delta rule 
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updating is characterized by a gradient descent in 
the error rate of the perceptron as it learns a new 
pattern. 

Following primary training of the 
perceptron we made systematic increases (factor 
of 2) to the “learned” weight matrix by initially 
altering 100 weight values (out of total 
4000=2.5%) and increasing the number of 
changed weights by increments of 100, up to the 
point of altering the entire matrix. We operationally 
defined each stepwise increase in the number of 
altered weights as one incremental condition, for a 
total of 40 conditions. Following each change to 
the learned matrix, we tested the recall ability of 
the perceptron.  

To measure the ability of the perceptron to 
recall the information it had learned, we presented 
the initial patterns and processed them through 
the transformed weight matrix, generating an 
output. The deviation of the generated output was 
compared to the desired memory and recorded as 
error rate. Mean error rate was plotted for the 100 
iterations in the 40 conditions.  

All experiments were performed within a 
network consisting of 20 input nodes and 20 
corresponding output nodes. These were fully 
interconnected by 4000 modeled synaptic 
connections.  
 
Results 

Initial perceptron learning took place 
successfully and the program was able to store all 
associations between the patterns introduced and 
desired outputs within the weight matrix. The 40 
incremental changes to this established matrix 
then produced a function of mean error rates 
reminiscent of a parabolic shape.  As illustrated by 
the curve in figure 2, the program begins at a state 
of perfect recall, meaning that the perceptron was 
able to associate all previously learned patterns. 
Therefore no errors in recall were evident when 
the original weight matrix was used (number of 
nodes altered=0). 

As changes were introduced to an 
increasing number of weights, a rapid decrease in 
the perceptron’s retrieval ability became evident. 
The decrease in recall ability plateaued when 
approximately a third of the nodes were changed 
(~1300/4000=32.5%). As the number of changed 
weights approached approximately 50% of the 
total matrix, an improvement in the recall ability 
began to take shape. By the time all 4000 weights 
had been adjusted, there was an error rate of 
zero.  

 

 
Figure 2. Modeling the error in retrieval of stored 
patterns as an increasing number of weights (0%-100%) 
is modified. X=0 represents the point at which no weight 
values have been manipulated. As the x-axis advances, 
an increasingly large proportion of the weight matrix is 
doubled. Although 0% and 100% manipulation does not 
result in any error in the system, intermediate 
proportions do cause the system to falter (maximum 
error at approximately 32.5% manipulation). As a larger 
portion of the weight values are increased, system error 
declines until the point of 100% manipulation, where no 
error is observed. 

 
Discussion and Conclusion 

The principal findings of this study were 
(1) Manipulating a fraction of the weight matrix 
resulted in errors in perceptron retrieval of learned 
patterns (2) Errors in perceptron pattern retrieval 
were maximized when 35-50% of all weights were 
increased (3) Beyond this point, recall 
performance improved as a larger fraction of 
synaptic weights were changed (4) When all 
weight values were adjusted, the error rate 
returned to zero.  

The occurrence of initial weights is 
Gaussian distributed (or normally distributed) as a 
result of Central Limit Theorem implication. As 
these values undergo Delta rule-mediated 
updating throughout the learning process, a new 
matrix is conceived which exhibits a specific 
distribution in accordance with the stimulus 
learned.  

 In our experiment, we illustrate that the 
shape of this final weight distribution plays an 
important role in observed error during pattern 
retrieval. When the weight matrix is unaltered after 
learning (0%), the occurrence of each weight 
value can be expressed with a normal distribution, 
resulting in Gaussian distributed weight values. 
Interestingly, we discovered that multiplying every 
value of the weight matrix (4000/4000=100%) by a 
constant did not result in increased error. As such, 
0% and 100% manipulation both result in similarly 
distributed weight values and zero error, 
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consistent with perfect association between input 
patterns and target output. Conversely, when a 
proportion of the matrix (0% < χ < 100%) was 
multiplied by a constant, the shape of the weight 
distribution began to change and was associated 
with increased error. The error rate then declined 
as a larger proportion of the weights were 
increased (allowing the initial distribution shape to 
reemerge). Together, these points illustrate the 
importance of maintaining shape of the weight 
distribution established in the learning phase, 
throughout memory retrieval. As well as the 
tendency of the system to falter when the 
distribution of weights is experimentally skewed. 
We have therefore shown that even when the 
values of the entire weight matrix are significantly 
altered, the pattern retrieval performance is 
perfect, provided that the weight distribution is 
reflective of previously determined associations. 

Such a result may be explained through 
examination of homeostatic-like mechanisms 
within the program. When the perceptron is 
trained, a level of balance is established in the 
weight matrix, and can be conceptualized to lie in 
the shape of its distribution, rather than the values 
themselves. It also presents with a mean value of 
synaptic strength, perhaps traceable to pathway 
function. This mean weight value is flanked by 
more negative and positive values drawn out by 
the learning phase, specific to the network, and 
the task learned. Disruption of this shape may lead 
to the error rate observed. This can be illustrated 
in a simplified model as shown in figure 3. 

 

 
Figure 3. Schematic model of perceptron function using 
inputs weighted randomly according to a uniformly 
distributed weight matrix. The occurrence of various 
weight values is represented by bold vertical bars 
associated with inputs and the Y-axis shows the 
distribution of these values around the mean. The 
output node produces a pattern guided by the weight 
values. 
 

Given the model’s apparent dependence 
on the shape of its weight distribution in order for 
proper recall to take place, perhaps we can derive 
inferences concerning these processes in living 
systems. The importance of maintaining the array 
of weights established in learning throughout the 
testing of recall can be examined at a number of 
levels of exploration. Such alterations of specific 

network connections at a biomolecular level, for 
example, could possibly unbalance the cascade of 
cellular events associated with LTP. Such a 
disruption could potentially cause significant 
alterations in learning and/or recall ability; a result 
which may even be observable at a 
psychophysical level. Experimental manipulations 
to specific components of Long-Term Potentiation, 
or specific cells within a network, may disrupt the 
physiology of the system. According to data 
presented here, such a localized imbalance has 
potential to cause system failure in the perceptron 
and these results are indeed observed in many 
living systems following the manipulation of select 
steps of the memory formation process (as 
previously described). 

The solution for perceptron learning, and 
possibly neuronal learning as well, is to implement 
changes to the system as a whole rather than to 
specific parts. It is evident that synaptic weights 
are required to change to enable successful 
learning. We also observe, however, that isolating 
select weight values for increase is detrimental to 
the network’s ability to learn. From a biological 
standpoint, we can speculate that system level 
investigation must be carried out through means 
which incorporate the entire brain area or perhaps 
the entire brain or organism. Memory-related 
investigation of attention may fulfill these 
requirements. 

Conversely, perhaps such living systems 
are much more versatile than the perceptron 
concerning synaptic strengths within a network. In 
this case the heightened sensitivity to balanced 
input may hold the perceptron back from its 
application to real world learning.  

Many other manipulations of the weight 
matrix are conceivable. With them exists a chance 
to clarify the degree of influence each element of 
the weight matrix might carry. For example, an 
interesting approach may be to selectively change 
or eliminate the values of either positive or 
negative weights, and observe the effect on 
retrieval error. Based on the approximate 
symmetry of our data, one would expect that the 
positive and negative weights would carry equal 
influence (although this might not hold true in 
some more complex systems).  Also, it would 
likely be beneficial to solely change the small 
weights in the matrix (either positive or negative). 
Under the presumption that these weights carry 
little effect on the overall connectivity, changes in 
these weights would not be expected to produce 
large differences in pattern retrieval.  

In this study of simulated learning and 
recall, we have demonstrated the properties and 
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importance of the weight distribution when working 
within a perceptron model. The experiments 
proposed above are intended to further qualify 
these findings, and shed more light on this feature 
of perceptron recall exposing what may either be 
an applicable trait, or strict limitation of said model. 
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Supplementary Materials 
 
The perceptron (20 input/output nodes with 
200-unit patterns) converges to a solution: 
(Supplement.jpg) 
 

Program for the Error Rate vs. number of 
altered nodes curve: 
clear; 
perceptron; 
n=0:100:4000; 
  
for u=1:41; 
d=n(u); 
if d < 1; 
    rOut=wOut*rIn>0; 
    distzero=sum(sum((rDes-rOut).^2))/26;   
    error1=distzero; 
else 
    for c=1:100; 
        x=randperm(4000); 
        select(:,c)=x(1:d); 
    end 
    for y=1:100; 
        wOut(select(:,y))= 
wOut(select(:,y))*2;    
        rOut=wOut*rIn>0; 
        distH1=sum(sum((rDes-rOut).^2))/26;   
        error1(y)=distH1; 
        wOut(select(:,y))=wOut(select(:,y))/2; 
    end 
    int(u)=mean(error1); 
    dev(u)=se(error1); 
clear select 
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end 
end 
  
errorbar(n, int, dev) 
xlabel('Number of Increased Weights (/4000)'); 
ylabel('Average Error Rate'); 
 
Programmed error measured as “Hamming distance” ;  
n correcting substitutions required (ie. distH1)/n total values = 
proportion of error reported 
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